M09/5/MATHL/HP1/ENG/TZ2/XX/M+

International Baccalaureate[®] Baccalauréat International Bachillerato Internacional

MARKSCHEME

May 2009

MATHEMATICS

ExamsBuddy

Higher Level

Paper 1

Samples to Team Leaders	8 June 2009
Everything (marks, scripts etc.) to IB Cardiff	16 June 2009

14 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced by any other person without the authorization of IB Cardiff.

Instructions to Examiners

Abbreviations

- М Marks awarded for attempting to use a correct Method; working must be seen.
- Marks awarded for **Method**; may be implied by **correct** subsequent working. (\mathbf{M})
- A Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding *M* marks.
- Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working. (A)
- R Marks awarded for clear Reasoning.
- NMarks awarded for correct answers if no working shown.
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Write the marks in red on candidates' scripts, in the right hand margin.

- Show the breakdown of indicated garine syndeducine the abbreviations *M1*, *A1*, *etc*.
 Write down the total for each question (at the end of the question) and circle it.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award M0 followed by AI, as A mark(s) depend on the preceding M mark(s), if any.
- Where M and A marks are noted on the same line, e.g. MIA1, this usually means M1 for an attempt to use an appropriate method (e.g. substitution into a formula) and A1 for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

3 N marks

Award N marks for correct answers where there is **no** working.

- Do **not** award a mixture of *N* and other marks.
- There may be fewer N marks available than the total of M, A and R marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets e.g.** (M1), and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value (*e.g.* $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (**MR**). Apply a **MR** penalty of 1 mark to that question **EXECUTION** (MR) and the model of 1 mark to the total for the question. A candidate should be penalized only once for a particular mis-read.

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value (*e.g.* $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. The mark should be labelled (d) and a brief **note** written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by **EITHER** ... OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, *accept* equivalent forms.

- As this is an international examination, accept all alternative forms of **notation**.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x-3)$, the markscheme gives:

$$f'(x) = (2\cos(5x-3))5 \quad (=10\cos(5x-3))$$
 A1

Award AI for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy.

- **Rounding errors**: only applies to final answers not to intermediate steps.
- Level of accuracy: when this is not specified in the question the general rule applies: *unless* otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Candidates should be penalized once only IN THE PAPER for an accuracy error (AP). Award the marks as usual then write (AP) against the answer. On the front cover write -1(AP). Deduct 1 mark from the total for the paper, not the question.

- If a final correct answer is incorrectly rounded, apply the AP.
- If the level of accuracy is not specified in the question, apply the *AP* for correct answers not given to three significant figures.

If there is no working shown, and answers are given to the correct two significant figures, apply the *AP*. However, do not accept answers to one significant figure without working.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

SECTION A

1.	$q\left(-1\right) = k + 9$	MIA1
	q(-2) = 4k + 9	A1
	k + 9 = 7(4k + 9)	M1
	k = -2	A1
Not	es: The first <i>M1</i> is for one substitution and the consequent equations.	
	Accept expressions for $q(-1)$ and $q(-2)$ that are not simplified.	

[5 marks]

2.	(a)	64			A1	
	(b)	(i)	90 percentile = 87 minimum mark = 87	(accept 88)	(M1)A1	
		(ii)	70 percentile = 74 minimum mark = 74	(accept 73)	(M1)A1	[5 marks]

(a) $\int_0^2 kx(2-x)dx = 1$	M1A1
Note: Award <i>M1</i> for LHS and <i>A1</i> for setting $=1$ at any stage.	
$\left[\frac{2k}{2}x^2 - \frac{k}{3}x^3\right]_0^2 = 1$ ExamsBuddy	A1
$k\left(4-\frac{8}{3}\right)=1$	AI
$k = \frac{3}{4}$	AG
(b) $E(X) = \frac{3}{4} \int_0^2 x^2 (2-x) dx$	(M1)
=1	AI
Note: Accept answers that indicate use of symmetry.	

[6 marks]

4. (a)
$$\frac{3}{x+1} + \frac{2}{x+3} = \frac{3(x+3) + 2(x+1)}{(x+1)(x+3)}$$
 M1
 $= \frac{3x+9+2x+2}{x^2+4x+3}$ A1
 $= \frac{5x+11}{x^2+4x+3}$ AG

(b)

$$\int_{0}^{2} \frac{5x+11}{x^{2}+4x+3} dx = \int_{0}^{2} \left(\frac{3}{x+1} + \frac{2}{x+3}\right) dx \qquad MI$$

5. (a)
$$8x + 2y \frac{dy}{dx} = 0$$
 MIA1

Note: Award *M1A0* for
$$8x + 2y \frac{dy}{dx} = 4$$
.
$$\frac{dy}{dx} = -\frac{4x}{y}$$
 ExamsBuddy A1

(c)
$$V = \int \pi y^2 dx$$
 or equivalent
 $V = \pi \int_{-1}^{1} (4 - 4x^2) dx$ A1

$$V = \pi \int_{0}^{1} (4 - 4x^{2}) dx$$
 A1
= $\pi \left[4x - \frac{4}{3}x^{3} \right]^{1}$ A1

$$=\frac{8\pi}{3}$$

Note: If it is correct except for the omission of π , award 2 marks.

[8 marks]

6. (a) det
$$M = a^2 + b^2$$

 $a^2 + b^2 > 0$, therefore M is non-singular or equivalent statement $R1$

(b)
$$M^2 = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = \begin{pmatrix} a^2 - b^2 & 2ab \\ -2ab & a^2 - b^2 \end{pmatrix}$$
 MIA1

EITHER (c)

$$\det(\mathbf{M}^2) = (a^2 - b^2)(a^2 - b^2) + (2ab)(2ab)$$

$$\det(\mathbf{M}^2) = (a^2 - b^2)^2 + (2ab)^2 \quad \left(=(a^2 + b^2)^2\right)$$
A1

since the first term is non-negative and the second is positive **R1** therefore det $(M^2) > 0$

Note: Do not penalise first term stated as positive.

OR

$\det(\boldsymbol{M}^2) = (\det \boldsymbol{M})^2$	A1
since det M is positive so too is det (M^2)	<i>R1</i>

[6 marks]

A1

(a) $1 - \sqrt{3}i$ 7. *A1*

EITHER (b)

ExamsBuddy

$$(z - (1 + \sqrt{3}i))(z - (1 - \sqrt{3}i)) = z^2 - 2z + 4$$

$$p(z) = (z - 2)(z^2 - 2z + 4)$$
(M1)

 $= z^3 - 4z^2 + 8z - 8$ therefore b = -4, c = 8, d = -8

OR

relating coefficients of cubic equations to roots $-b = 2 + 1 + \sqrt{3}i + 1 - \sqrt{3}i = 4$ **M1** $c = 2(1 + \sqrt{3}i) + 2(1 - \sqrt{3}i) + (1 + \sqrt{3}i)(1 - \sqrt{3}i) = 8$ $-d = 2(1 + \sqrt{3}i)(1 - \sqrt{3}i) = 8$ b = -4, c = 8, d = -8A1A1A1

(c)
$$z_2 = 2e^{\frac{i\pi}{3}}, z_3 = 2e^{-\frac{i\pi}{3}}$$
 A1A1A1
Note: Award A1 for modulus,
A1 for each argument.

[8 marks]

8. let n = 1

LHS = $1 \times 1! = 1$ RHS = (1+1)!-1=2-1=1hence true for n = 1assume true for n = k

$$\sum_{r=1}^{k} r(r!) = (k+1)! - 1$$
 M1

$$\sum_{r=1}^{k+1} r(r!) = (k+1)! - 1 + (k+1) \times (k+1)!$$
MIA1

$$= (k+1)!(1+k+1)-1$$

= (k+1)!(k+2)-1 A1
= (k+2)!-1 A1

$$k = (k + 2)$$
. $n = k$ hence if true for $n = k$, true for $n = k + 1$ $R1$ since the result is true for $n = 1$ and $P(k) \Rightarrow P(k+1)$ the result is proved by $R1$ mathematical induction $\forall n \in \mathbb{Z}^+$ $R1$

[8 marks]

R1

9.	(a)	a reasonable attempt to show either that $n^2 + n + 1 > 2n + 1$ or	
		$n^2 + n + 1 > n^2 - 1$	M1
		complete solution to each inequality	AIAI

(b)
$$\cos\theta = \frac{(2n+1)^2 + (n^2-1)^2 - (n^2+n+1)^2}{2(2n+1)}$$
 MIAI

$$=\frac{-2n^{3}-n^{2}+2n+1}{2(2n+1)(n^{2}-1)}$$
M1

$$=-\frac{(n-1)(n+1)(2n+1)}{2(2n+1)(n^2-1)}$$
A1

$$=-\frac{1}{2}$$
 A1

$$\theta = 120^{\circ}$$
 AG

[8 marks]

SECTION B

10. (a) identifies a direction vector *e.g.*
$$\vec{AB} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$
 or $\vec{BA} = \begin{pmatrix} -2 \\ -1 \\ -1 \end{pmatrix}$
identifies the point (1, -1, 2) *A1*

identifies the point (1, -1, 2)

line
$$l_1: \frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{1}$$
 AG

(b)	$\boldsymbol{r} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \qquad \boldsymbol{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$		
	$1 + 2\lambda = 1 + \mu, -1 + \lambda = 2 + 2\mu, 2 + \lambda = 3 + \mu$	(M1)	
	equating two of the three equations gives $\lambda = -1$ and $\mu = -2$	A1A1	
check in the third equation satisfies third equation therefore the lines intersect therefore coordinates of intersection are $(-1, -2, 1)$		R1 A1	
		[5 mai	rks]

(c)
$$d_1 = 2i + j + k$$
, $d_2 = i + 2j + k$ A1
 $d_1 \times d_2 = \begin{vmatrix} i & j & k \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{vmatrix} = -i + 2i \times amsBuddy$ M1A1

Note: Accept scalar multiples of above vectors.

[3 marks]

(d)	equation of plane is $-x - y + 3z = k$	M1A1	
	contains (1, 2, 3) (or (-1, -2, 1) or (1, -1, 2)) $\therefore k = -1 - 2 + 3 \times 3 = 6$	A1	
	-x - y + 3z = 6	AG	

A1

(e) direction vector of the perpendicular line is
$$\begin{pmatrix} -1 \\ -1 \\ 3 \end{pmatrix}$$
 (*MI*)

$$\boldsymbol{r} = \begin{pmatrix} 3 \\ 1 \\ -4 \end{pmatrix} + m \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$

Note: Award A0 if r omitted.

[2 marks]

continued ...

Question 10 continued

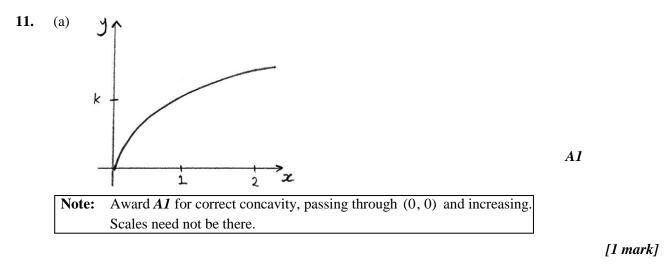
(f)(i)find point where line meets plane
-(3-m)-(1-m)+3(-4+3m)=6M1
M1
m = 2m=2
point of intersection is (1, -1, 2)A1(ii)for T', m=4
so T' = (-1, -3, 8)(M1)
A1

(iii)
$$\overrightarrow{TT'} = \sqrt{(3+1)^2 + (1+3)^2 + (-4-8)^2}$$
 (M1)
= $\sqrt{176}$ (= $4\sqrt{11}$) A1

[7 marks]

Total [22 marks]

ExamsBuddy



(b) a statement involving the application of the Horizontal Line Test or equivalent AI

[1 mark]

[2 marks]

(c) $y = k\sqrt{x}$

for either $x = k\sqrt{y}$ or $x = \frac{y^2}{k^2}$ A1

$$f^{-1}(x) = \frac{x^{2}}{k^{2}}$$

$$dom(f^{-1}(x)) = [0, \infty]$$
A1

(d)
$$\frac{x^2}{k^2} = k\sqrt{x}$$
 or equivalent method *M1*
 $k = \sqrt{x}$
 $k = 2$ *A1*

(e) (i)
$$A = \int_{a}^{b} (y_1 - y_2) dx$$
 (M1)

$$A = \int_{0}^{4} \left(2x^{\frac{1}{2}} - \frac{1}{4}x^{2} \right) dx$$
 A1
= $\left[\frac{4}{2}x^{\frac{3}{2}} - \frac{1}{12}x^{3} \right]^{4}$ A1

$$\begin{bmatrix} 3 & 12 \end{bmatrix}_{0}$$
$$=\frac{16}{2}$$

$$=\frac{1}{3}$$

(ii) attempt to find either f'(x) or $(f^{-1})'(x)$

$$f'(x) = \frac{1}{\sqrt{x}}, \left((f^{-1})'(x) = \frac{x}{2} \right)$$
 AIA1

$$c = 2^{\frac{2}{3}} \qquad \qquad \mathbf{A1}$$

[9 marks]

Total [16 marks]

M1

12. (a) any appropriate form, *e.g.* $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$

(b)

A1 [1 mark]

(c)
$$\left(z - \frac{1}{z}\right)^5 = z^5 + {\binom{5}{1}} z^4 \left(-\frac{1}{z}\right) + {\binom{5}{2}} z^3 \left(-\frac{1}{z}\right)^2 + {\binom{5}{3}} z^2 \left(-\frac{1}{z}\right)^3 + {\binom{5}{4}} z \left(-\frac{1}{z}\right)^4 + \left(-\frac{1}{z}\right)^5 (MI)(AI)$$

$$= z^5 - 5z^3 + 10z - \frac{10}{z} + \frac{5}{z^3} - \frac{1}{z^5} AI$$

[3 marks]

(d)
$$\left(z - \frac{1}{z}\right)^5 = z^5 - \frac{1}{z^5} - 5\left(z^3 - \frac{1}{z^3}\right) + 10\left(z - \frac{1}{z}\right)$$
 MIA1
 $(2i\sin\theta)^5 = 2i\sin 5\theta - 10i\sin 3\theta + 20i\sin\theta$ *MIA1*

 $16\sin^5\theta = \sin 5\theta - 5\sin 3\theta + 10\sin \theta$ **ExamsBuddy**

[4 marks]

AG

(e)
$$16\sin^5\theta = \sin 5\theta - 5\sin 3\theta + 10\sin \theta$$

LHS $= 16\left(\sin\frac{\pi}{4}\right)^5$
 $= 16\left(\frac{\sqrt{2}}{2}\right)^5$
 $= 2\sqrt{2} \quad \left(=\frac{4}{\sqrt{2}}\right)$
RHS $= \sin\left(\frac{5\pi}{4}\right) - 5\sin\left(\frac{3\pi}{4}\right) + 10\sin\left(\frac{\pi}{4}\right)$
 $= -\frac{\sqrt{2}}{2} - 5\left(\frac{\sqrt{2}}{2}\right) + 10\left(\frac{\sqrt{2}}{2}\right)$
MIAI
Note: Award MI for attempted substitution.

$$=2\sqrt{2}\left(=\frac{4}{\sqrt{2}}\right)$$

hence this is true for $\theta = \frac{\pi}{4}$

[4 marks]

A1

AG

continued ...

Question 12 continued

(f)
$$\int_{0}^{\frac{\pi}{2}} \sin^{5} \theta \, \mathrm{d}\theta = \frac{1}{16} \int_{0}^{\frac{\pi}{2}} (\sin 5\theta - 5\sin 3\theta + 10\sin \theta) \, \mathrm{d}\theta \qquad M1$$
$$= \frac{1}{16} \left[-\frac{\cos 5\theta}{5} + \frac{5\cos 3\theta}{3} - 10\cos \theta \right]^{\frac{\pi}{2}} \qquad A1$$

$$=\frac{1}{16} \begin{bmatrix} 0 - \left(-\frac{1}{5} + \frac{5}{3} - 10\right) \end{bmatrix}$$
 A1

$$=\frac{8}{15}$$
 A1

[4 marks]

(g)
$$\int_{0}^{\frac{\pi}{2}} \cos^5 \theta \, d\theta = \frac{8}{15}$$
, with appropriate reference to symmetry and graphs. *A1R1R1*

Note: Award first *R1* for partially correct reasoning *e.g.* sketches of graphs of sin and cos. Award second *R1* for fully correct reasoning involving \sin^5 and \cos^5 .

[3 marks]

Total [22 marks]

