

International Baccalaureate
Baccalauréat International
Bachillerato Internacional

88087205

## MATHEMATICS

HIGHER LEVEL
PAPER 3 - SETS, RELATIONS AND GROUPS
Thursday 13 November 2008 (afternoon)

1 hour

## INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 12]
$A, B, C$ and $D$ are subsets of $\mathbb{Z}$.

$$
\begin{aligned}
& A=\{m \mid m \text { is a prime number less than } 15\} \\
& B=\left\{m \mid m^{4}=8 m\right\} \\
& C=\{m \mid(m+1)(m-2)<0\} \\
& D=\left\{m \mid m^{2}<2 m+4\right\}
\end{aligned}
$$

(a) List the elements of each of these sets.
(b) Determine, giving reasons, which of the following statements are true and which are false.
(i) $\quad n(D)=n(B)+n(B \cup C)$
(ii) $D \backslash B \subset A$
(iii) $B \cap A^{\prime}=\varnothing$
(iv) $n(B \Delta C)=2$
2. [Maximum mark: 10]

A binary operation is defined on $\{-1,0,1\}$ by

$$
A \odot B=\left\{\begin{aligned}
-1, & \text { if }|A|<|B| \\
0, & \text { if }|A|=|B| \\
1, & \text { if }|A|>|B|
\end{aligned}\right.
$$

(a) Construct the Cayley table for this operation.
(b) Giving reasons, determine whether the operation is
(i) closed;
(ii) commutative;
(iii) associative.
3. [Maximum mark: 10]

Two functions, $F$ and $G$, are defined on $A=\mathbb{R} \backslash\{0,1\}$ by

$$
F(x)=\frac{1}{x}, G(x)=1-x, \text { for all } x \in A
$$

(a) Show that under the operation of composition of functions each function is its own inverse.
(b) $F$ and $G$ together with four other functions form a closed set under the operation of composition of functions.

Find these four functions.
4. [Maximum mark: 13]

Determine, giving reasons, which of the following sets form groups under the operations given below. Where appropriate you may assume that multiplication is associative.
(a) $\mathbb{Z}$ under subtraction.
(b) The set of complex numbers of modulus 1 under multiplication.
(c) The set $\{1,2,4,6,8\}$ under multiplication modulo 10 .
(d) The set of rational numbers of the form

$$
\frac{3 m+1}{3 n+1}, \text { where } m, n \in \mathbb{Z}
$$

under multiplication.
5. [Maximum mark: 15]

Three functions mapping $\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ are defined by

$$
f_{1}(m, n)=m-n+4 ; f_{2}(m, n)=|m| ; f_{3}(m, n)=m^{2}-n^{2} .
$$

Two functions mapping $\mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ are defined by

$$
g_{1}(k)=(2 k, k) ; g_{2}(k)=(k,|k|) .
$$

(a) Find the range of
(i) $f_{1} \circ g_{1}$;
(ii) $f_{3} \circ g_{2}$.
(b) Find all the solutions of $f_{1} \circ g_{2}(k)=f_{2} \circ g_{1}(k)$.
(c) Find all the solutions of $f_{3}(m, n)=p$ in each of the cases $p=1$ and $p=2$.

