(i)

International Baccalaureate
Baccalauréat International
Bachillerato Internacional

MATHEMATICS

HIGHER LEVEL
PAPER 3 - SERIES AND DIFFERENTIAL EQUATIONS
Thursday 13 November 2008 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 12]
(a) Show that the solution of the homogeneous differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{x}+1, x>0,
$$

given that $y=0$ when $x=\mathrm{e}$, is $y=x(\ln x-1)$.
(b) (i) Determine the first three derivatives of the function $f(x)=x(\ln x-1)$.
(ii) Hence find the first three non-zero terms of the Taylor series for $f(x)$ about $x=1$.
2. [Maximum mark: 19]
(a) (i) Show that $\int_{1}^{\infty} \frac{1}{x(x+p)} \mathrm{d} x, p \neq 0$ is convergent if $p>-1$ and find its value in terms of p.
(ii) Hence show that the following series is convergent.

$$
\frac{1}{1 \times 0.5}+\frac{1}{2 \times 1.5}+\frac{1}{3 \times 2.5}+\cdots
$$

(b) Determine, for each of the following series, whether it is convergent or divergent.
(i) $\quad \sum_{n=1}^{\infty} \sin \left(\frac{1}{n(n+3)}\right)$
(ii) $\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{6}}+\sqrt{\frac{1}{12}}+\sqrt{\frac{1}{20}}+\cdots$
3. [Maximum mark: 12]

The function $f(x)=\frac{1+a x}{1+b x}$ can be expanded as a power series in x, within its radius of convergence R , in the form $f(x) \equiv 1+\sum_{n=1}^{\infty} c_{n} x^{n}$.
(a) (i) Show that $c_{n}=(-b)^{n-1}(a-b)$.
(ii) State the value of R .
(b) Determine the values of a and b for which the expansion of $f(x)$ agrees with that of e^{x} up to and including the term in x^{2}.
(c) Hence find a rational approximation to $\mathrm{e}^{\frac{1}{3}}$.
4. [Maximum mark: 17]
(a) Show that the solution of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\cos x \cos ^{2} y
$$

given that $y=\frac{\pi}{4}$ when $x=\pi$, is $y=\arctan (1+\sin x)$.
(b) Determine the value of the constant a for which the following limit exists

$$
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\arctan (1+\sin x)-a}{\left(x-\frac{\pi}{2}\right)^{2}}
$$

and evaluate that limit.
[12 marks]

