

International Baccalaureate
Baccalauréat International
Bachillerato Internacional

88087203

## MATHEMATICS

HIGHER LEVEL
PAPER 3 - DISCRETE MATHEMATICS
Thursday 13 November 2008 (afternoon)

1 hour

## INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 19]
(a) Convert the decimal number 51966 to base 16 .
(b) (i) Using the Euclidean algorithm, find the greatest common divisor, $d$, of 901 and 612.
(ii) Find integers $p$ and $q$ such that $901 p+612 q=d$.
(iii) Find the least possible positive integers $s$ and $t$ such that $901 s-612 t=85$. [10 marks]
(c) In each of the following cases find the solutions, if any, of the given linear congruence.
(i) $9 x \equiv 3(\bmod 18)$
(ii) $9 x \equiv 3(\bmod 15)$
2. [Maximum mark: 12]
(a) Use Kruskal's algorithm to find the minimum spanning tree for the following weighted graph and state its length.

(b) Use Dijkstra's algorithm to find the shortest path from A to D in the following weighted graph and state its length.

3. [Maximum mark: 12]
(a) Write 457128 as a product of primes.
(b) Numbers of the form $F_{n}=2^{2^{n}}+1, n \in \mathbb{N}$ are called Fermat numbers.

Find the smallest value of $n$ for which the corresponding Fermat number has more than a million digits.
(c) Prove that $22 \mid 5^{11}+17^{11}$.
4. [Maximum mark: 17]
(a) A connected planar graph $G$ has $e$ edges and $v$ vertices.
(i) Prove that $e \geq v-1$.
(ii) Prove that $e=v-1$ if and only if $G$ is a tree.
(b) A tree has $k$ vertices of degree 1 , two of degree 2 , one of degree 3 and one of degree 4 . Determine $k$ and hence draw a tree that satisfies these conditions.
(c) The graph $H$ has the adjacency matrix given below.

$$
\left(\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

(i) Explain why $H$ cannot be a tree.
(ii) Draw the graph of $H$.
(d) Prove that a tree is a bipartite graph.

