MATHEMATICS

HIGHER LEVEL
PAPER 3 - SERIES AND DIFFERENTIAL EQUATIONS
Monday 19 May 2008 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 10]
(a) Find the value of $\lim _{x \rightarrow 1}\left(\frac{\ln x}{\sin 2 \pi x}\right)$.
(b) By using the series expansions for $\mathrm{e}^{x^{2}}$ and $\cos x$ evaluate $\lim _{x \rightarrow 0}\left(\frac{1-\mathrm{e}^{x^{2}}}{1-\cos x}\right)$.
2. [Maximum mark: 9]

Find the exact value of $\int_{0}^{\infty} \frac{\mathrm{d} x}{(x+2)(2 x+1)}$.
3. [Maximum mark: 14]

A curve that passes through the point $(1,2)$ is defined by the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x\left(1+x^{2}-y\right) .
$$

(a) (i) Use Euler's method to get an approximate value of y when $x=1.3$, taking steps of 0.1. Show intermediate steps to four decimal places in a table.
(ii) How can a more accurate answer be obtained using Euler's method?
(b) Solve the differential equation giving your answer in the form $y=f(x)$.
4. [Maximum mark: 14]
(a) Given that $y=\ln \cos x$, show that the first two non-zero terms of the Maclaurin series for y are $-\frac{x^{2}}{2}-\frac{x^{4}}{12}$.
(b) Use this series to find an approximation in terms of π for $\ln 2$.
5. [Maximum mark: 13]
(a) Find the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{(n+1) 3^{n}}$.
(b) Determine whether the series $\sum_{n=0}^{\infty}\left(\sqrt[3]{n^{3}+1}-n\right)$ is convergent or divergent. [7 marks]

