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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to 
find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks 
may be given for a correct method, provided this is shown by written working.  You are therefore advised 
to show all working.

1. [Maximum mark:  10]

 (a) Find the value of lim ln
sinx

x
x→









1 2π

. [3 marks]

 (b) By using the series expansions for ex2

 and cos x  evaluate lim
cosx

x

x→

−
−









0

1
1

2

e . [7 marks]

2.  [Maximum mark:  9]

 Find the exact value of dx
x x( ) ( )+ +

∞

∫ 2 2 10
.

3.  [Maximum mark:  14]

 A curve that passes through the point ( , )1 2  is defined by the differential equation 

d
d
y
x

x x y= + −2 1 2( ) . 

 (a) (i) Use Euler’s method to get an approximate value of y when x =1 3. , taking 
steps of 0.1.  Show intermediate steps to four decimal places in a table.

 
  (ii) How can a more accurate answer be obtained using Euler’s method? [5 marks]

 (b) Solve the differential equation giving your answer in the form y f x= ( ) . [9 marks]

4.  [Maximum mark:  14]

 (a) Given that y x= ln cos , show that the first two non-zero terms of the Maclaurin 

series for y are − −x x2 4

2 12
. [8 marks]

 (b) Use this series to find an approximation in terms of π  for ln 2 . [6 marks]
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5.  [Maximum mark:  13]

 (a) Find the radius of convergence of the series ( )
( )
−

+=

∞

∑ 1
1 30

n n

n
n

x
n

. [6 marks]

 (b) Determine whether the series n n
n

33

0
1+ −( )

=

∞

∑  is convergent or divergent. [7 marks]
 


