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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to 
find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks 
may be given for a correct method, provided this is shown by written working.  You are therefore advised 
to show all working.

1.	 [Maximum mark:  6]

 Determine whether the series n
n

n

10

1 10=

∞

∑  is convergent or divergent. 

2.	 [Maximum mark:  9]

 (a) Using l’Hopital’s Rule, show that  elim
x

xx
→∞

− = 0 . [2 marks]

 (b) Determine x xxa
e d−∫0

. [5 marks]

 (c) Show that the integral x xxe d−∞

∫0
 is convergent and find its value. [2 marks]

3.	 [Maximum mark:  13]

 Consider the differential equation

x y
x

y x
x

d
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+

2
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3

2 .

 (a) Find an integrating factor for this differential equation. [5 marks]

 (b) Solve the differential equation given that y =1 when x =1, giving your answer 
in the form y f x= ( ) . [8 marks]
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4.	 [Maximum mark:  15]
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 The diagram shows part of the graph of y
x

= 1
3  together with line segments parallel to 

the coordinate axes.

 (a) Using the diagram, show that
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x . [3 marks]

 (b) Hence find upper and lower bounds for 1
3

1 nn=

∞

∑ . [12 marks]

5.	 [Maximum mark:  17]

 The function  f  is defined by

f x
x

( ) ln=
−







1
1

.

 (a) Write down the value of the constant term in the Maclaurin series for f x( ) . [1 mark]

 (b) Find the first three derivatives of f x( )  and hence show that the Maclaurin series 

for f x( )  up to and including the x3  term is x x x+ +
2 3

2 3
. [6 marks]

 (c) Use this series to find an approximate value for ln 2 . [3 marks]

 (d) Use the Lagrange form of the remainder to find an upper bound for the error in 
this approximation. [5 marks]

 (e) How good is this upper bound as an estimate for the actual error? [2 marks]


