MATHEMATICS

HIGHER LEVEL
PAPER 3 - SERIES AND DIFFERENTIAL EQUATIONS
Monday 19 May 2008 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 6]

Determine whether the series $\sum_{n=1}^{\infty} \frac{n^{10}}{10^{n}}$ is convergent or divergent.
2. [Maximum mark: 9]
(a) Using l'Hopital's Rule, show that $\lim _{x \rightarrow \infty} x \mathrm{e}^{-x}=0$.
(b) Determine $\int_{0}^{a} x \mathrm{e}^{-x} \mathrm{~d} x$.
(c) Show that the integral $\int_{0}^{\infty} x \mathrm{e}^{-x} \mathrm{~d} x$ is convergent and find its value.
3. [Maximum mark: 13]

Consider the differential equation

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y=\frac{x^{3}}{x^{2}+1} .
$$

(a) Find an integrating factor for this differential equation.
(b) Solve the differential equation given that $y=1$ when $x=1$, giving your answer in the form $y=f(x)$.
4. [Maximum mark: 15]

The diagram shows part of the graph of $y=\frac{1}{x^{3}}$ together with line segments parallel to the coordinate axes.
(a) Using the diagram, show that

$$
\frac{1}{4^{3}}+\frac{1}{5^{3}}+\frac{1}{6^{3}}+\ldots<\int_{3}^{\infty} \frac{1}{x^{3}} \mathrm{~d} x<\frac{1}{3^{3}}+\frac{1}{4^{3}}+\frac{1}{5^{3}}+\ldots .
$$

(b) Hence find upper and lower bounds for $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$.
5. [Maximum mark: 17]

The function f is defined by

$$
f(x)=\ln \left(\frac{1}{1-x}\right)
$$

(a) Write down the value of the constant term in the Maclaurin series for $f(x)$.
(b) Find the first three derivatives of $f(x)$ and hence show that the Maclaurin series for $f(x)$ up to and including the x^{3} term is $x+\frac{x^{2}}{2}+\frac{x^{3}}{3}$.
(c) Use this series to find an approximate value for $\ln 2$.
(d) Use the Lagrange form of the remainder to find an upper bound for the error in this approximation.
(e) How good is this upper bound as an estimate for the actual error?

