MARKSCHEME

May 2008

MATHEMATICS

Higher Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IB Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy: often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Write the marks in red on candidates'scripts, in the right hand margin.

- Show the breakdown of individual marks awarded using the abbreviations M1, A1, etc.
- Write down the total for each question (at the end of the question) and circle it.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

Award \boldsymbol{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value $($ e.g. $\sin \theta=1.5)$, do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then write $-1(\mathbf{M R})$ next to the total. Subtract 1 mark from the total for the question. A candidate should be penalized only once for a particular mis-read.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. The mark should be labelled (d) and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $A 1$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy.

- Rounding errors: only applies to final answers not to intermediate steps.
- Level of accuracy: when this is not specified in the question the general rule applies: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Candidates should be penalized once only IN THE PAPER for an accuracy error (AP). Award the marks as usual then write (AP) against the answer. On the front cover write -1(AP). Deduct 1 mark from the total for the paper, not the question.

- If a final correct answer is incorrectly rounded, apply the $\boldsymbol{A P}$.
- If the level of accuracy is not specified in the question, apply the $\boldsymbol{A P}$ for correct answers not given to three significant figures.

If there is no working shown, and answers are given to the correct two significant figures, apply the $\boldsymbol{A P}$. However, do not accept answers to one significant figure without working.

11
 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

SECTION A

1. (a) Use of $\bar{x}=\frac{\sum_{i=1}^{4} x_{i}}{n}$
$\bar{x}=\frac{(k-2)+k+(k+1)+(k+4)}{4}$
$\bar{x}=\frac{4 k+3}{4} \quad\left(=k+\frac{3}{4}\right)$
(b) Either attempting to find the new mean or subtracting 3 from their \bar{x}
2. (a) Either finding depths graphically, using $\sin \frac{\pi t}{6}= \pm 1$ or solving $h^{\prime}(t)=0$ for t (M1) $h(t)_{\max }=12(\mathrm{~m}), h(t)_{\text {min }}=4(\mathrm{~m})$ A1A1
(b) Attempting to solve $8+4 \sin \frac{\pi t}{6}=8$ algebraically or graphically (M1) $t \in[0,6] \cup[12,18] \cup\{24\}$

A1A1
3. (a) Either solving $\mathrm{e}^{-x}-x+1=0$ for x, stating $\mathrm{e}^{-x}-x+1=0$, stating $\mathrm{P}(x, 0)$ or using an appropriate sketch graph. M1 $x=1.28$

A1
Note: Accept $\mathrm{P}(1.28,0)$.
(b) Area $=\int_{0}^{1.278 \ldots}\left(\mathrm{e}^{-x}-x+1\right) \mathrm{d} x$ M1A1
$=1.18$ A1
N1
Note: Award M1A0A1 if the $\mathrm{d} x$ is absent.
4. Attempting to find the mode graphically or by using $f^{\prime}(x)=12 x(2-3 x)$

Mode $=\frac{2}{3}$
Use of $\mathrm{E}(X)=\int_{0}^{1} x f(x) \mathrm{d} x$ (M1)
$\mathrm{E}(X)=\frac{3}{5}$
$\int_{\frac{3}{5}}^{\frac{2}{3}} f(x) \mathrm{d} x=0.117\left(=\frac{1981}{16875}\right)$
M1A1

5. METHOD 1

Attempting to use the cosine rule i.e. $\mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}-2 \times \mathrm{AB} \times \mathrm{AC} \times \cos \mathrm{BAC}$
(M1)
$6^{2}=8.75^{2}+\mathrm{AC}^{2}-2 \times 8.75 \times \mathrm{AC} \times \cos 37.8^{\circ}$ (or equivalent)
Attempting to solve the quadratic in AC e.g. graphically, numerically or with quadratic formula
Evidence from a sketch graph or their quadratic formula ($\mathrm{AC}=\ldots$)
that there are two values of AC to determine.
(A1)
$\mathrm{AC}=9.60$ or $\mathrm{AC}=4.22$
Note: Award (M1)A1M1A1(A0)A1A0 for one correct value of AC.

METHOD 2

Attempting to use the sine rule i.e. $\frac{\mathrm{BC}}{\sin \mathrm{BA} C}=\frac{\mathrm{AB}}{\sin \hat{A} \hat{C}}$
$\sin C=\frac{8.75 \sin 37.8^{\circ}}{6} \quad(=0.8938 \ldots)$
$C=63.3576 \ldots$... A1
$C=116.6423 \ldots \circ$ and $B=78.842 \ldots$ or $B=25.5576 \ldots$ 。

EITHER

Attempting to solve $\frac{\mathrm{AC}}{\sin 78.842 \ldots .^{\circ}}=\frac{6}{\sin 37.8^{\circ}}$ or $\frac{\mathrm{AC}}{\sin 25.5576 \ldots .^{\circ}}=\frac{6}{\sin 37.8^{\circ}}$

OR

Attempting to solve $\mathrm{AC}^{2}=8.75^{2}+6^{2}-2 \times 8.75 \times 6 \times \cos 25.5576 \ldots$ or

$$
\mathrm{AC}^{2}=8.75^{2}+6^{2}-2 \times 8.75 \times 6 \times \cos 78.842 \ldots
$$

M1
$\mathrm{AC}=9.60$ or $\mathrm{AC}=4.22$

A1A1

Note: Award (M1)(A1)A1A0M1A1A0 for one correct value of AC.

6. METHOD 1

EITHER

Using the graph of $y=f^{\prime}(x)$

The maximum of $f^{\prime}(x)$ occurs at $x=-0.5$.

OR

Using the graph of $y=f^{\prime \prime}(x)$.

The zero of $f^{\prime \prime}(x)$ occurs at $x=-0.5$.

THEN

Note: Do not award this $\boldsymbol{A l}$ for stating $x= \pm 0.5$ as the final answer for x.

$$
f(-0.5)=0.607\left(=\mathrm{e}^{-0.5}\right)
$$

Note: Do not award this $\boldsymbol{A l}$ for also stating $(0.5,0.607)$ as a coordinate.

Question 6 continued

EITHER

Correctly labelled graph of $f^{\prime}(x)$ for $x<0$ denoting the maximum $f^{\prime}(x)$ (e.g. $f^{\prime}(-0.6)=1.17$ and $f^{\prime}(-0.4)=1.16$ stated $)$

OR

Correctly labelled graph of $f^{\prime \prime}(x)$ for $x<0$ denoting the maximum $f^{\prime}(x) \quad \boldsymbol{R} \mathbf{1}$ (e.g. $f^{\prime \prime}(-0.6)=0.857$ and $f^{\prime \prime}(-0.4)=-1.05$ stated)

OR

$f^{\prime}(0.5) \approx 1.21 . f^{\prime}(x)<1.21$ just to the left of $x=-\frac{1}{2}$
and $f^{\prime}(x)<1.21$ just to the right of $x=-\frac{1}{2}$
(e.g. $f^{\prime}(-0.6)=1.17$ and $f^{\prime}(-0.4)=1.16$ stated $)$

A1

OR

$f^{\prime \prime}(x)>0$ just to the left of $x=-\frac{1}{2}$ and $f^{\prime \prime}(x)<0$ just to the right of $x=-\frac{1}{2}$ (e.g. $f^{\prime \prime}(-0.6)=0.857$ and $f^{\prime \prime}(-0.4)=-1.05$ stated $)$

Question 6 continued

METHOD 2

$f^{\prime}(x)=-4 x \mathrm{e}^{-2 x^{2}} \quad$ A1
$f^{\prime \prime}(x)=-4 \mathrm{e}^{-2 x^{2}}+16 x^{2} \mathrm{e}^{-2 x^{2}} \quad\left(=\left(16 x^{2}-4\right) \mathrm{e}^{-2 x^{2}}\right) \quad$ A1
Attempting to solve $f^{\prime \prime}(x)=0$ (M1)
$x=-\frac{1}{2}$
Note: Do not award this $\boldsymbol{A l}$ for stating $x= \pm \frac{1}{2}$ as the final answer for x.
$f\left(-\frac{1}{2}\right)=\frac{1}{\sqrt{\mathrm{e}}}(=0.607)$
Note: Do not award this $\boldsymbol{A 1}$ for also stating $\left(\frac{1}{2}, \frac{1}{\sqrt{\mathrm{e}}}\right)$ as a coordinate.

EITHER

Correctly labelled graph of $f^{\prime}(x)$ for $x<0$ denoting the maximum $f^{\prime}(x)$
(e.g. $f^{\prime}(-0.6)=1.17$ and $f^{\prime}(-0.4)=1.16$ stated)

A1
OR
Correctly labelled graph of $f^{\prime \prime}(x)$ for $x<0$ denoting the maximum $f^{\prime}(x)$
(e.g. $f^{\prime \prime}(-0.6)=0.857$ and $f^{\prime \prime}(-0.4)=-1.05$ stated)

A1
N2
OR
$f^{\prime}(0.5) \approx 1.21 . f^{\prime}(x)<1.21$ just to the left of $x=-\frac{1}{2}$
and $f^{\prime}(x)<1.21$ just to the right of $x=-\frac{1}{2}$
(e.g. $f^{\prime}(-0.6)=1.17$ and $f^{\prime}(-0.4)=1.16$ stated)

OR
$f^{\prime \prime}(x)>0$ just to the left of $x=-\frac{1}{2}$ and $f^{\prime \prime}(x)<0$ just to the right of $x=-\frac{1}{2}$
(e.g. $f^{\prime \prime}(-0.6)=0.857$ and $f^{\prime \prime}(-0.4)=-1.05$ stated)
7. (a) $\quad X \sim B(n, 0.4)$
$\operatorname{Using} \mathrm{P}(X=x)=\binom{n}{r}(0.4)^{x}(0.6)^{n-x}$
$\mathrm{P}(X=2)=\binom{n}{2}(0.4)^{2}(0.6)^{n-2} \quad\left(=\frac{n(n-1)}{2}(0.4)^{2}(0.6)^{n-2}\right)$
(b) $\mathrm{P}(X=2)=0.121$

Using an appropriate method (including trial and error) to solve their equation. (M1)
$n=10$
A1
Note: Do not award the last $\boldsymbol{A 1}$ if any other solution is given in their final answer.
8.

A1A1A1A1A1

Notes: Award $\boldsymbol{A 1}$ for vertical asymptotes at $x=-1, x=2$ and $x=5$.
$A 1$ for $x \rightarrow-2, \frac{1}{f(x)} \rightarrow 0^{+}$
A1 for $x \rightarrow 8, \frac{1}{f(x)} \rightarrow-1$
A1 for local maximum at $\left(0,-\frac{1}{2}\right)$ (branch containing local max. must be present)
$\boldsymbol{A 1}$ for local minimum at $(3,1)$ (branch containing local min. must be present)
In each branch, correct asymptotic behaviour must be displayed to obtain the $\boldsymbol{A 1}$.
Disregard any stated horizontal asymptotes such as $y=0$ or $y=-1$.

9. METHOD 1

Substituting $z=x+\mathrm{i} y$ to obtain $w=\frac{x+y \mathrm{i}}{(x+y \mathrm{i})^{2}+1}$
$w=\frac{x+y \mathrm{i}}{x^{2}-y^{2}+1+2 x y \mathrm{i}}$
Use of $\left(x^{2}-y^{2}+1-2 x y i\right)$ to make the denominator real.

$$
\begin{equation*}
=\frac{(x+y i)\left(x^{2}-y^{2}+1-2 x y \mathrm{i}\right)}{\left(x^{2}-y^{2}+1\right)^{2}+4 x^{2} y^{2}} \tag{A1}
\end{equation*}
$$

$\operatorname{Im} w=\frac{y\left(x^{2}-y^{2}+1\right)-2 x^{2} y}{\left(x^{2}-y^{2}+1\right)^{2}+4 x^{2} y^{2}}$

$$
\begin{equation*}
=\frac{y\left(1-x^{2}-y^{2}\right)}{\left(x^{2}-y^{2}+1\right)^{2}+4 x^{2} y^{2}} \tag{A1}
\end{equation*}
$$

$\operatorname{Im} w=0 \Rightarrow 1-x^{2}-y^{2}=0$ i.e. $|z|=1$ as $y \neq 0$
R1AG

METHOD 2

$w\left(z^{2}+1\right)=z$
$w\left(x^{2}-y^{2}+1+2 \mathrm{i} x y\right)=x+y \mathrm{i}$
Equating real and imaginary parts
$w\left(x^{2}-y^{2}+1\right)=x$ and $2 w x=1, y \neq 0$
Substituting $w=\frac{1}{2 x}$ to give $\frac{x}{2}-\frac{y^{2}}{2 x}+\frac{1}{2 x}=x$
$-\frac{1}{2 x}\left(y^{2}-1\right)=\frac{x}{2}$ or equivalent
$x^{2}+y^{2}=1$, i.e. $|z|=1$ as $y \neq 0$
R1AG
10. Attempting to solve $\left|0.1 x^{2}-2 x+3\right|=\log _{10} x$ numerically or graphically.
(M1)
$x=1.52,1.79$
(A1)(A1)
$x=17.6,19.1$
$(1.52<x<1.79) \cup(17.6<x<19.1)$
(A1)
A1A1

SECTION B

11. (a) (i) $\mathrm{P}(4.8<X<7.5)=\mathrm{P}(-0.8<Z<1)$
(M1)

$$
=0.629
$$

$$
A 1
$$

Note: Accept $\mathrm{P}(4.8 \leq X \leq 7.5)=\mathrm{P}(-0.8 \leq Z \leq 1)$.
(ii) Stating $\mathrm{P}(X<d)=0.15$ or sketching an appropriately labelled diagram. A1

$$
\begin{aligned}
& \frac{d-6}{1.5}=-1.0364 \ldots \\
& d=(-1.0364 \ldots)(1.5)+6 \\
& \quad=4.45(\mathrm{~km})
\end{aligned}
$$

(M1)(A1)
(M1)
A1
[7 marks]
(b) Stating both $\mathrm{P}(X>8)=0.1$ and $\mathrm{P}(X<2)=0.05$ or sketching an appropriately labelled diagram.
Setting up two equations in μ and σ
(M1)
$8=\mu+(1.281 \ldots) \sigma$ and $2=\mu-(1.644 \ldots) \sigma$
Attempting to solve for μ and σ (including by graphical means)
(M1)
$\sigma=2.05(\mathrm{~km})$ and $\mu=5.37(\mathrm{~km})$
A1A1
N4

Note: Accept $\mu=5.36,5.38$.
[6 marks]
(c) (i) Use of the Poisson distribution in an inequality.

M1
$\mathrm{P}(T \geq 3)=1-\mathrm{P}(T \leq 2)$

$$
=0.679 \ldots
$$

$$
A 1
$$

Required probability is $(0.679 \ldots)^{2}=0.461$
M1A1
N3
Note: Allow $\boldsymbol{F T}$ for their value of $\mathrm{P}(T \geq 3)$.
(ii) $\begin{array}{rlrr}\tau \sim \operatorname{Po}(17.5) & \text { A1 } \\ \mathrm{P}(\tau=15) & =\frac{\mathrm{e}^{-17.5}(17.5)^{15}}{15!} \\ & =0.0849 & \text { (M1) } & \\ & \text { A1 } & \text { [8 marks] }\end{array}$

Total [21 marks]
12. (a) (i) Attempting to find \boldsymbol{M}^{2}

M1
$\boldsymbol{M}^{2}=\left(\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & b c+d^{2}\end{array}\right)$
$b(a+d)=b$ or $c(a+d)=c$
A1
[3 marks]

METHOD 2

Using $b c=a(1-a)$ and $a+d=1$ to obtain $b c=a d$
M1A1
$\operatorname{det} \boldsymbol{M}=a d-b c$ and $a d-b c=0$ as $b c=a d$
R1
Hence \boldsymbol{M} is a singular matrix
$A G$
(M1)
$0<a<1$
A1A1
Note: \quad Award $\boldsymbol{A 1}$ for correct endpoints and $\boldsymbol{A 1}$ for correct inequality signs.

Hence $a+d=1 \quad($ as $b \neq 0$ or $c \neq 0) \quad A \boldsymbol{G}$
(ii) $a^{2}+b c=a \quad$ M1
$\Rightarrow b c=a-a^{2} \quad(=a(1-a))$
A1 [5 marks]
(b) METHOD 1

Using $\operatorname{det} \boldsymbol{M}=a d-b c \quad$ M1
$\operatorname{det} \boldsymbol{M}=a d-a(1-a)$ or $\operatorname{det} \boldsymbol{M}=a(1-a)-a(1-a)$ (or equivalent) $\boldsymbol{A 1}$
$=0$ using $a+d=1$ or $d=1-a$ to simplify their expression
R1
$A G$
Hence \boldsymbol{M} is a singular matrix

Question 12 continued

(d) METHOD 1

$$
\begin{array}{rlrr}
\text { Attempting to expand }(\boldsymbol{I}-\boldsymbol{M})^{2} & \boldsymbol{M 1} & \\
(\boldsymbol{I}-\boldsymbol{M})^{2} & =\boldsymbol{I}-2 \boldsymbol{M}+\boldsymbol{M}^{2} & A 1 & \\
& =\boldsymbol{I}-2 \boldsymbol{M}+\boldsymbol{M} & \boldsymbol{A 1} & \\
& =\boldsymbol{I}-\boldsymbol{M} & \boldsymbol{A G} & \boldsymbol{N O} \\
& & & {[3 \text { marks }]}
\end{array}
$$

METHOD 2

Attempting to expand $(\boldsymbol{I}-\boldsymbol{M})^{2}=\left(\begin{array}{cc}1-a & -b \\ -c & 1-d\end{array}\right)^{2}$ (or equivalent)
$(\boldsymbol{I}-\boldsymbol{M})^{2}=\left(\begin{array}{cc}(1-a)^{2}+b c & -b(1-a)-b(1-d) \\ -c(1-a)-c(1-d) & b c+(1-d)^{2}\end{array}\right)$ (or equivalent)
Use of $a+d=1$ and $b c=a-a^{2}$ to show desired result.
Hence $(\boldsymbol{I}-\boldsymbol{M})^{2}=\left(\begin{array}{cc}1-a & -b \\ -c & 1-d\end{array}\right)$
(e) $\quad\left(\right.$ Let $P(n)$ be $\left.(\boldsymbol{I}-\boldsymbol{M})^{n}=\boldsymbol{I}-\boldsymbol{M}\right)$

For $n=1:(\boldsymbol{I}-\boldsymbol{M})^{1}=\boldsymbol{I}-\boldsymbol{M}$, so $P(1)$ is true
Assume $P(k)$ is true, i.e. $(\boldsymbol{I}-\boldsymbol{M})^{k}=\boldsymbol{I}-\boldsymbol{M}$
Consider $P(k+1)$

$$
(\boldsymbol{I}-\boldsymbol{M})^{k+1}=(\boldsymbol{I}-\boldsymbol{M})^{k}(\boldsymbol{I}-\boldsymbol{M}) \quad \text { M1 }
$$

$$
=(I-M)(I-M) \quad\left(=(I-M)^{2}\right) \quad A 1
$$

$$
=(\boldsymbol{I}-\boldsymbol{M})
$$

$$
A 1
$$

$P(k)$ true implies $P(k+1)$ true, $P(1)$ true so $P(n)$ true $\forall n \in \mathbb{Z}^{+}$

No
[6 marks]
13. (a) (i) EITHER
Attempting to separate the variables
(M1)
$\frac{\mathrm{d} v}{-v\left(1+v^{2}\right)}=\frac{\mathrm{d} t}{50}$

OR
Inverting to obtain $\frac{\mathrm{d} t}{\mathrm{~d} v}$
(M1)

$$
\begin{equation*}
\frac{\mathrm{d} t}{\mathrm{~d} v}=\frac{-50}{v\left(1+v^{2}\right)} \tag{A1}
\end{equation*}
$$

THEN

$$
\begin{array}{llr}
t=-50 \int_{10}^{5} \frac{1}{v\left(1+v^{2}\right)} \mathrm{d} v\left(=50 \int_{5}^{10} \frac{1}{v\left(1+v^{2}\right)} \mathrm{d} v\right) & \boldsymbol{A 1} & \mathrm{N} 3 \\
\text { (ii) } \quad t=0.732(\mathrm{sec})\left(=25 \ln \frac{104}{101}(\mathrm{sec})\right) & \boldsymbol{A} 2 & \mathrm{~N} 2 \\
& & \text { [5 marks] }
\end{array}
$$

Question 13 continued

(b) (i) $\frac{\mathrm{d} v}{\mathrm{~d} t}=v \frac{\mathrm{~d} v}{\mathrm{~d} x}$
(M1)
Must see division by $v(v>0) \quad \boldsymbol{A 1}$
$\frac{\mathrm{d} v}{\mathrm{~d} x}=\frac{-\left(1+v^{2}\right)}{50}$
$A G$
No
(ii) Either attempting to separate variables or inverting to obtain $\frac{\mathrm{d} x}{\mathrm{~d} v}$ (M1)

$$
\begin{array}{lr}
\int \frac{\mathrm{d} v}{1+v^{2}}=-\frac{1}{50} \int \mathrm{~d} x \text { (or equivalent) } & \boldsymbol{A 1} \\
\text { Attempting to integrate both sides } & \boldsymbol{M 1} \\
\arctan v=-\frac{x}{50}+C & \boldsymbol{A 1 A 1}
\end{array}
$$

Note: \quad Award $\boldsymbol{A 1}$ for a correct LHS and $\boldsymbol{A 1}$ for a correct RHS that must include C.
$\begin{array}{lc}\text { When } x=0, v=10 \text { and so } C=\arctan 10 & \text { M1 } \\ x=50(\arctan 10-\arctan v) & \text { A1 }\end{array}$
(iii) Attempting to make $\arctan v$ the subject.

M1
$\arctan v=\arctan 10-\frac{x}{50}$ A1
$v=\tan \left(\arctan 10-\frac{x}{50}\right)$
M1A1
Using $\tan (A-B)$ formula to obtain the desired form. M1

$$
v=\frac{10-\tan \frac{x}{50}}{1+10 \tan \frac{x}{50}}
$$

$$
A G
$$

