

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

MATHEMATICS HIGHER LEVEL PAPER 3

Wednesday 16 May 2007 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions in one section only.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Statistics and probability

1. [Maximum mark: 18]

A zoologist believes that the number of eggs laid in the Spring by female birds of a certain breed follows a Poisson law. She observes 100 birds during this period and she produces the following table.

Number of eggs laid	Frequency		
0	10		
1	19		
2	34		
3	23		
4	10		
5	4		

(a) Calculate the mean number of eggs laid by these birds.

- (b) The zoologist wishes to determine whether or not a Poisson law provides a suitable model.
 - (i) Write down appropriate hypotheses.
 - (ii) Carry out a test at the 1 % significance level, and state your conclusion. *[16 marks]*

[2 marks]

2. [Maximum mark: 12]

The ten children in a class were each given two puzzles and the times taken, in seconds, to solve them were recorded as follows.

Child	A	В	С	D	Е	F	G	Н	Ι	J
Puzzle 1	66.3	71.9	62.8	69.8	64.6	74.9	68.8	72.6	70.4	74.2
Puzzle 2	64.8	71.6	59.9	68.1	66.0	72.4	67.7	70.9	69.8	74.6

It is claimed that, on average, a child takes the same time to solve each puzzle. Treating the data as matched pairs, use a two-tailed test at the 5 % significance level to determine whether or not this claim is justified.

[12 marks]

3. [Maximum mark: 9]

The daily rainfall in a holiday resort follows a normal distribution with mean μ mm and standard deviation σ mm. The rainfall each day is independent of the rainfall on other days.

On a randomly chosen day, there is a probability of 0.05 that the rainfall is greater than 10.2 mm .

In a randomly chosen 7-day week, there is a probability of 0.025 that the **mean** daily rainfall is less than 6.1 mm.

Find the value of μ and of σ .

[9 marks]

[1 mark]

[10 marks]

4. [Maximum mark: 11]

An urn contains 15 marbles, b of which are blue and (15-b) are red. Peter knows that the value of b is either 5 or 9 but he does not know which. He therefore sets up the hypotheses

$$H_0: b = 5, H_1: b = 9.$$

To choose which hypothesis to accept, he selects 3 marbles at random without replacement. Let X denote the number of blue marbles selected. He decides to accept H_1 if $X \ge 2$ and to accept H_0 otherwise.

- (a) State the name given to the region $X \ge 2$.
- (b) Find the probability of making
 - (i) a Type I error;
 - (ii) a Type II error.

5. [Maximum mark: 10]

Let $X_1, X_2, ..., X_{20}$ be independent random variables each having a geometric distribution with probability of success p equal to 0.6.

Let
$$Y = \sum_{i=1}^{20} X_i$$
.

- (a) Explain why the random variable *Y* has a negative binomial distribution. [2 marks]
- (b) Find the mean and variance of *Y*. [4 marks]
- (c) Calculate P(Y = 30). [4 marks]

SECTION B

- 5 -

Sets, relations and groups

1. [Maximum mark: 10]

Let $a, b \in \mathbb{Z}^+$ and define $aRb \Leftrightarrow a^2 \equiv b^2 \pmod{3}$.

- (a) Show that R is an equivalence relation. [6 marks]
- (b) Find all the equivalence classes. [4 marks]

2. [Maximum mark: 14]

Let * be a binary operation defined on \mathbb{R} as follows:

$$a * b = a + b - 1$$

- (a) Determine whether or not the operation * is commutative. [2 marks]
- (b) Show that $\{\mathbb{R}, *\}$ is a group. [12 marks]

3. [Maximum mark: 12]

(a)

The permutations p_1 and p_2 of the integers $\{1, 2, 3, 4, 5\}$ are given by

$$p_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}; p_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}.$$

Find the order of p_1 .

- (b) (i) Find $p_2 p_1$, the composite permutation p_1 followed by p_2 .
 - (ii) Determine whether or not p_1 and p_2 commute under composition of permutations. [4 marks]

[4 marks]

4. [Maximum mark: 18]

The set *S* contains the four elements *a*, *b*, *c*, *d*. The groups $\{S, \circ\}$ and $\{S, \times\}$ have the following Cayley tables.

0	а	b	С	d
a	С	d	а	b
b	d	С	b	а
С	а	b	С	d
d	b	а	d	С

×	а	b	С	d
а	С	а	d	b
b	а	b	С	d
С	d	С	b	a
d	b	d	а	с

(a) For each group,

- (i) state the identity,
- (ii) find the order of each of the elements. [6 marks]
- (b) Write down all the proper subgroups of
 - (i) $\{S, \circ\};$
 - (ii) $\{S, \times\}$. [4 marks]
- (c) Solve the equation $(a \circ (x \times x)) \times d = c$. [8 marks]

5. [Maximum mark: 6]

Let *A* and *B* be sets such that $A \cap B = A \cup B$. Prove that A = B. [6 marks]

SECTION C

Series and differential equations

- **1.** [Maximum mark: 10]
 - (a) Use l'Hôpital's Rule to find

(i)
$$\lim_{x \to 1} \frac{\ln x^2}{x - 1};$$

(ii)
$$\lim_{x \to 0} \frac{\tan^2 x}{1 - \cos x}.$$
 [8 marks]

(b) Giving a reason, state whether the following argument is correct or incorrect.

"Using l'Hôpital's Rule,
$$\lim_{x \to 3} \frac{x-3}{x^2-3} = \lim_{x \to 3} \frac{1}{2x} = \frac{1}{6}$$
." [2 marks]

2. [Maximum mark: 8]

Given that the Maclaurin series for $e^{\sin x}$ is $a + bx + cx^2 + dx^3 + ...$, find the values of *a*, *b*, *c* and *d*. [8 marks]

3. [Maximum mark: 12]

Consider the infinite series $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$.

(a) Show that the series is convergent.

(b) (i) Express
$$\frac{1}{n(n+2)}$$
 in partial fractions.

(ii) Hence find $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$. [9 marks]

[3 marks]

4. [Maximum mark: 16]

(a) Use integration by parts to show that

$$\int \sin x \cos x \, \mathrm{e}^{-\sin x} \mathrm{d}x = -\mathrm{e}^{-\sin x} (1 + \sin x) + C \,. \qquad \qquad [4 \text{ marks}]$$

Consider the differential equation $\frac{dy}{dx} - y \cos x = \sin x \cos x$.

- (b) Find an integrating factor. [3 marks]
- (c) Solve the differential equation, given that y = -2 when x = 0. Give your answer in the form y = f(x). [9 marks]

5. [Maximum mark: 14]

Find the interval of convergence of the series $\sum_{n=1}^{\infty} \sin\left(\frac{\pi}{n}\right) x^n$. [14 marks]

SECTION D

Discrete mathematics

1. [Maximum mark: 14]

The weights of the edges in a simple graph G are given in the following table.

Vertices	А	В	С	D	Е	F
А	-	4	6	16	15	17
В	4	-	5	17	9	16
С	6	5	-	15	8	14
D	16	17	15	-	15	7
Е	15	9	8	15	-	18
F	17	16	14	7	18	_

- (a) Use Prim's Algorithm, starting with vertex F, to find and draw the minimum spanning tree for G. Your solution should indicate the order in which the edges are introduced.
 - Use your tree to find an upper bound for the travelling salesman problem for *G*. [2 marks]

2. [Maximum mark: 16]

(b)

(a) Use the Euclidean algorithm to find the greatest common divisor of 43 and 73. [5 marks]

Consider the equation 43x + 73y = 7, where $x, y \in \mathbb{Z}$.

- (b) (i) Find the general solution of this equation.
 - (ii) Find the solution which minimises |x| + |y|. [11 marks]

[12 marks]

3. [Maximum mark: 13]

Let *H* be the weighted graph drawn below.

- Name the two vertices of odd degree. (a) (i)
 - State the shortest path between these two vertices. (ii)
 - (iii) Using the route inspection algorithm, or otherwise, find a walk, starting and ending at A, of minimum total weight which includes every edge at least once.
 - (iv) Calculate the weight of this walk. [11 marks]
- (b) Write down a Hamiltonian cycle in *H*. [2 marks]

[Maximum mark: 9] 4.

Consider the equation $x^{12}+1=7y$, where $x, y \in \mathbb{Z}^+$. Using Fermat's little theorem, show that this equation has no solution. [9 marks]

5. [Maximum mark: 8]

Let *K* be a simple graph.

- Define the complement, K', of K. [1 mark] (a)
- Given that K has six vertices, show that K and K' cannot both contain an Eulerian (b) trail. [7 marks]