MATHEMATICS
HIGHER LEVEL
PAPER 2

Tuesday 8 May 2007 (morning)
2 hours

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 27]

Consider the vectors $\boldsymbol{a}=\boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k}, \boldsymbol{b}=\boldsymbol{i}+2 \boldsymbol{j}+4 \boldsymbol{k}$ and $\boldsymbol{c}=2 \boldsymbol{i}-5 \boldsymbol{j}-\boldsymbol{k}$.
(a) Given that $\boldsymbol{c}=m \boldsymbol{a}+n \boldsymbol{b}$ where $m, n \in \mathbb{Z}$, find the value of m and of n.
(b) Find a unit vector, \boldsymbol{u}, normal to both \boldsymbol{a} and \boldsymbol{b}.
(c) The plane π_{1} contains the point $\mathrm{A}(1,-1,1)$ and is normal to \boldsymbol{b}. The plane intersects the x, y and z axes at the points L, M and N respectively.
(i) Find a Cartesian equation of π_{1}.
(ii) Write down the coordinates of L, M and N .
(d) The line through the origin, O , normal to π_{1} meets π_{1} at the point P .
(i) Find the coordinates of P .
(ii) Hence find the distance of π_{1} from the origin.
(e) The plane π_{2} has equation $x+2 y+4 z=4$. Calculate the angle between π_{2} and a line parallel to \boldsymbol{a}.
2. [Total Mark: 21]

Part A [Maximum mark: 11]
The times taken for buses travelling between two towns are normally distributed with a mean of 35 minutes and standard deviation of 7 minutes.
(a) Find the probability that a randomly chosen bus completes the journey in less than 40 minutes.
(b) 90% of buses complete the journey in less than t minutes. Find the value of t.
(c) A random sample of 10 buses had their travel time between the two towns recorded. Find the probability that exactly 6 of these buses complete the journey in less than 40 minutes.

Part B [Maximum mark: 10]
The number of bus accidents that occur in a given period of time has a Poisson distribution with a mean of 0.6 accidents per day.
(a) Find the probability that at least two accidents occur on a randomly chosen day. [4 marks]
(b) Find the most likely number of accidents occurring on a randomly chosen day. Justify your answer.
(c) Find the probability that no accidents occur during a randomly chosen seven-day week.
3. [Maximum mark: 22]

Let $\boldsymbol{A}=\left(\begin{array}{ll}3 & 1 \\ 4 & 3\end{array}\right)$.
(a) Find the values of λ for which the matrix $(\boldsymbol{A}-\lambda \boldsymbol{I})$ is singular.

Let $\boldsymbol{A}^{2}+m \boldsymbol{A}+n \boldsymbol{I}=\boldsymbol{O}$ where $m, n \in \mathbb{Z}$ and $\boldsymbol{O}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
(b) (i) Find the value of m and of n.
(ii) Hence show that $\boldsymbol{I}=\frac{1}{5} \boldsymbol{A}(6 \boldsymbol{I}-\boldsymbol{A})$.
(iii) Use the result from part (b) (ii) to explain why \boldsymbol{A} is non-singular.
(c) Use the values from part (b)(i) to express \boldsymbol{A}^{4} in the form $p \boldsymbol{A}+q \boldsymbol{I}$ where $p, q \in \mathbb{Z}$.
4. [Maximum mark: 22]

A television screen, BC, of height one metre, is built into a wall. The bottom of the television screen at B is one metre above an observer's eye level. The angles of elevation ($\mathrm{AOC}, \mathrm{AOB}$) from the observer's eye at O to the top and bottom of the television screen are α and β radians respectively. The horizontal distance from the observer's eye to the wall containing the television screen is x metres. The observer's angle of vision (BÔC) is θ radians, as shown below.

(a) (i) Show that $\theta=\arctan \frac{2}{x}-\arctan \frac{1}{x}$.
(ii) Hence, or otherwise, find the exact value of x for which θ is a maximum and justify that this value of x gives the maximum value of θ.
(iii) Find the maximum value of θ.
(b) Find where the observer should stand so that the angle of vision is 15°.
5. [Maximum mark: 28]

Let $u=1+\sqrt{3} \mathrm{i}$ and $v=1+\mathrm{i}$ where $\mathrm{i}^{2}=-1$.
(a) (i) Show that $\frac{u}{v}=\frac{\sqrt{3}+1}{2}+\frac{\sqrt{3}-1}{2}$ i.
(ii) By expressing both u and v in modulus-argument form show that

$$
\frac{u}{v}=\sqrt{2}\left(\cos \frac{\pi}{12}+\mathrm{i} \sin \frac{\pi}{12}\right)
$$

(iii) Hence find the exact value of $\tan \frac{\pi}{12}$ in the form $a+b \sqrt{3}$ where $a, b \in \mathbb{Z}$. [15 marks]
(b) Use mathematical induction to prove that for $n \in \mathbb{Z}^{+}$,
$(1+\sqrt{3} \mathrm{i})^{n}=2^{n}\left(\cos \frac{n \pi}{3}+\mathrm{i} \sin \frac{n \pi}{3}\right)$.
[7 marks]
(c) Let $z=\frac{\sqrt{2} v+u}{\sqrt{2} v-u}$.

Show that $\operatorname{Re} z=0$.
[6 marks]

