

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

MATHEMATICS HIGHER LEVEL PAPER 2

Tuesday 8 May 2007 (morning)

2 hours

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

M07/5/MATHL/HP2/ENG/TZ2/XX

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 27]

Consider the vectors $\mathbf{a} = \mathbf{i} - \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$ and $\mathbf{c} = 2\mathbf{i} - 5\mathbf{j} - \mathbf{k}$.

(a)	Given that $c = ma + nb$ where $m, n \in \mathbb{Z}$, find the value of m and of n .	[5 marks]
(b)	Find a unit vector, <i>u</i> , normal to both <i>a</i> and <i>b</i> .	[5 marks]
(c)	The plane π_1 contains the point A(1, -1, 1) and is normal to b . The plane intersects the <i>x</i> , <i>y</i> and <i>z</i> axes at the points L, M and N respectively.	
	(i) Find a Cartesian equation of π_1 .	
	(ii) Write down the coordinates of L, M and N.	[5 marks]
(d)	The line through the origin, O, normal to π_1 meets π_1 at the point P.	
	(i) Find the coordinates of P.	
	(ii) Hence find the distance of π_1 from the origin.	[7 marks]
(e)	The plane π_2 has equation $x + 2y + 4z = 4$. Calculate the angle between π_2 and a line parallel to a .	[5 marks]

2. [Total Mark: 21]

Part A [Maximum mark: 11]

The times taken for buses travelling between two towns are normally distributed with a mean of 35 minutes and standard deviation of 7 minutes.

(a)	Find the probability that a randomly chosen bus completes the journey in less than 40 minutes.	[2 marks]	
(b)	90 % of buses complete the journey in less than t minutes. Find the value of t .	[5 marks]	
(c)	A random sample of 10 buses had their travel time between the two towns recorded. Find the probability that exactly 6 of these buses complete the journey in less than 40 minutes.	[4 marks]	
Part B [Maximum mark: 10]			
The number of bus accidents that occur in a given period of time has a Poisson distribution with a mean of 0.6 accidents per day.			
(a)	Find the probability that at least two accidents occur on a randomly chosen day.	[4 marks]	
(b)	Find the most likely number of accidents occurring on a randomly chosen day. Justify your answer.	[3 marks]	

(c) Find the probability that no accidents occur during a randomly chosen seven-day week. [3 marks]

3. [Maximum mark: 22]

Let $A = \begin{pmatrix} 3 & 1 \\ 4 & 3 \end{pmatrix}$.

(a) Find the values of λ for which the matrix $(A - \lambda I)$ is singular. [5 marks]

Let $A^2 + mA + nI = 0$ where $m, n \in \mathbb{Z}$ and $O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

- (b) (i) Find the value of m and of n.
 - (ii) Hence show that $I = \frac{1}{5}A(6I A)$.
 - (iii) Use the result from **part (b) (ii)** to explain why *A* is non-singular. [12 marks]
- (c) Use the values from part (b)(i) to express A^4 in the form pA+qI where $p, q \in \mathbb{Z}$. [5 marks]

4. [*Maximum mark: 22*]

A television screen, BC, of height one metre, is built into a wall. The bottom of the television screen at B is one metre above an observer's eye level. The angles of elevation (\hat{AOC} , \hat{AOB}) from the observer's eye at O to the top and bottom of the television screen are α and β radians respectively. The horizontal distance from the observer's eye to the wall containing the television screen is *x* metres. The observer's angle of vision (\hat{BOC}) is θ radians, as shown below.

(a) (i) Show that
$$\theta = \arctan \frac{2}{x} - \arctan \frac{1}{x}$$
.

- (ii) Hence, or otherwise, find the **exact** value of x for which θ is a maximum and justify that this value of x gives the maximum value of θ .
- (iii) Find the maximum value of θ . [17 marks]
- (b) Find where the observer should stand so that the angle of vision is 15°. [5 marks]

5. [Maximum mark: 28]

Let $u = 1 + \sqrt{3}i$ and v = 1 + i where $i^2 = -1$.

(a) (i) Show that
$$\frac{u}{v} = \frac{\sqrt{3}+1}{2} + \frac{\sqrt{3}-1}{2}i$$
.

- (ii) By expressing both u and v in modulus-argument form show that $\frac{u}{v} = \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right).$
- (iii) Hence find the exact value of $\tan \frac{\pi}{12}$ in the form $a + b\sqrt{3}$ where $a, b \in \mathbb{Z}$. [15 marks]

(b) Use mathematical induction to prove that for
$$n \in \mathbb{Z}^+$$
,
 $\left(1 + \sqrt{3}i\right)^n = 2^n \left(\cos\frac{n\pi}{3} + i\sin\frac{n\pi}{3}\right).$ [7 marks]

(c) Let
$$z = \frac{\sqrt{2}v + u}{\sqrt{2}v - u}$$
.

Show that $\operatorname{Re} z = 0$.

[6 marks]