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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to 
find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks 
may be given for a correct method, provided this is shown by written working.  You are therefore advised 
to show all working.

1. [Maximum mark:  23]

 Two planes π1  and π 2  are represented by the equations 
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  (ii) show that the equation of π1  can be written as x y z− + =2 2 11. [4 marks]

 (b) show that π1  is perpendicular to π 2 . [4 marks]

 (c) The line l1  is the line of intersection of π1  and π 2 .
  Find the vector equation of l1 , giving the answer in parametric form. [5 marks]

 (d) The line l2  is parallel to both π1  and π 2 , and passes through  P (3 , – 5 , – 1) .
  Find an equation for l2  in cartesian form. [3 marks]

 (e) Let Q be the foot of the perpendicular from P to the plane π 2 .

  (i) Find the coordinates of Q.

  (ii) Find PQ. [7 marks]
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turn over 

2. [Maximum mark:  24]

 (a) Using the formula for cos ( )A B+  prove that cos cos2 2 1
2

θ
θ= + . [3 marks]

 (b) Hence, find cos2 x x d∫ . [4 marks]

 Let f x x( ) cos= �  and g x x( ) sec=  for  x ∈ −





π π
2 2

, .

 Let R be the region enclosed by the two functions.

 (c) Find the exact values of the x-coordinates of the points of intersection. [4 marks]

 (d) sketch the functions  f  and  g  and clearly shade the region R . [3 marks]

 The region R is rotated through 2π  about the x-axis to generate a solid.

 (e) (i) Write down an integral which represents the volume of this solid.

  (ii) Hence find the exact value of the volume. [10 marks]
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3. [Total Mark:  26]

 Part a [Maximum mark:  18]

The time, T minutes, spent each day by students in Amy’s school sending text messages 
may be modelled by a normal distribution.

30 %  of the students spend less than 10 minutes per day.
35 %  spend more than 15 minutes per day. 

 (a) Find the mean and standard deviation of T . [6 marks]

The number of text messages received by Amy during a fixed time interval may be 
modelled by a Poisson distribution with a mean of 6 messages per hour.

 (b) Find the probability that Amy will receive exactly 8 messages between 16:00 
and 18:00 on a random day. [3 marks]

 (c) Given that Amy has received at least 10 messages between 16:00 and 18:00 
on a random day, find the probability that she received 13 messages during 

  that time. [5 marks]

 (d) During a 5-day week, find the probability that there are exactly 3 days when 
Amy receives no messages between 17:�5 and 18:00 . [4 marks]

 Part B [Maximum mark:  8]

 Twenty candidates sat an examination in French.  The sum of their marks was 826 and 
the sum of the squares of their marks was  3� 132 .  Two candidates sat the examination 
late and their marks were  a  and  b .  The new mean and variance were calculated, giving 
the following results:

mean = �2  and variance = 32 .

 Find a set of possible values of  a  and  b . [8 marks]
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4. [Total Mark:  21]

 Part a [Maximum mark:  11]

 (a) Find the probability that a number, chosen at random between 200 and 800 
inclusive, will be a multiple of 9. [3 marks]

 (b) Find the sum of the numbers between 200 and 800 inclusive, which are multiples 
of 6, but not multiples of 9. [8 marks]

 Part B [Maximum mark:  10]

 Prove by induction that 12 2 5 1n n+ −( )  is a multiple of 7 for n∈ + . [10 marks]

5. [Maximum mark:  26]

 (a) (i) Factorize t t t3 23 3 1− − + , giving your answer as a product of a linear factor 
and a quadratic factor.

  (ii) Hence find all the exact solutions to the equation t t t3 23 3 1 0− − + = . [5 marks]

 (b) Using de Moivre’s theorem and the binomial expansion

  (i) show that cos cos cos sin3 33 2θ θ θ θ= − ;

  (ii) write down a similar expression for sin 3θ . [7 marks]

 (c) (i) Hence show that tan tan tan
tan

3 3
1 3

3

2θ
θ θ

θ
= −

−
.

  (ii) Find the values of θ θ, 0 180 ≤ ≤ , for which this identity is not valid. [7 marks]

 (d) Using the results from parts (a) and (c), find the exact values of tan15  and 
tan 75 . [7 marks]


