MATHEMATICS
HIGHER LEVEL
PAPER 2

Tuesday 8 May 2007 (morning)
2 hours

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 23]

Two planes π_{1} and π_{2} are represented by the equations

$$
\begin{aligned}
& \pi_{1}: \boldsymbol{r}=\left(\begin{array}{l}
3 \\
1 \\
5
\end{array}\right)+\lambda\left(\begin{array}{c}
-2 \\
2 \\
3
\end{array}\right)+\mu\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) \\
& \pi_{2}: 2 x-y-2 z=4 .
\end{aligned}
$$

(a) (i) Find $\left(\begin{array}{c}-2 \\ 2 \\ 3\end{array}\right) \times\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$.
(ii) Show that the equation of π_{1} can be written as $x-2 y+2 z=11$.
(b) Show that π_{1} is perpendicular to π_{2}.
(c) The line l_{1} is the line of intersection of π_{1} and π_{2}. Find the vector equation of l_{1}, giving the answer in parametric form.
(d) The line l_{2} is parallel to both π_{1} and π_{2}, and passes through $\mathrm{P}(3,-5,-1)$. Find an equation for l_{2} in Cartesian form.
(e) Let Q be the foot of the perpendicular from P to the plane π_{2}.
(i) Find the coordinates of Q .
(ii) Find PQ.
2. [Maximum mark: 24]
(a) Using the formula for $\cos (A+B)$ prove that $\cos ^{2} \theta=\frac{\cos 2 \theta+1}{2}$.
(b) Hence, find $\int \cos ^{2} x \mathrm{~d} x$.

Let $f(x)=4 \cos x$ and $g(x)=\sec x$ for $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$.
Let R be the region enclosed by the two functions.
(c) Find the exact values of the x-coordinates of the points of intersection.
(d) Sketch the functions f and g and clearly shade the region R.

The region R is rotated through 2π about the x-axis to generate a solid.
(e) (i) Write down an integral which represents the volume of this solid.
(ii) Hence find the exact value of the volume.
3. [Total Mark: 26]

Part A [Maximum mark: 18]
The time, T minutes, spent each day by students in Amy's school sending text messages may be modelled by a normal distribution.
30% of the students spend less than 10 minutes per day.
35% spend more than 15 minutes per day.
(a) Find the mean and standard deviation of T.

The number of text messages received by Amy during a fixed time interval may be modelled by a Poisson distribution with a mean of 6 messages per hour.
(b) Find the probability that Amy will receive exactly 8 messages between 16:00 and 18:00 on a random day.
(c) Given that Amy has received at least 10 messages between 16:00 and 18:00 on a random day, find the probability that she received 13 messages during that time.
(d) During a 5 -day week, find the probability that there are exactly 3 days when Amy receives no messages between 17:45 and 18:00.

Part B [Maximum mark: 8]

Twenty candidates sat an examination in French. The sum of their marks was 826 and the sum of the squares of their marks was 34132 . Two candidates sat the examination late and their marks were a and b. The new mean and variance were calculated, giving the following results:

$$
\text { mean }=42 \text { and variance }=32 .
$$

Find a set of possible values of a and b.
4. [Total Mark: 21]

Part A [Maximum mark: 11]
(a) Find the probability that a number, chosen at random between 200 and 800 inclusive, will be a multiple of 9 .
(b) Find the sum of the numbers between 200 and 800 inclusive, which are multiples of 6 , but not multiples of 9 .

Part B [Maximum mark: 10]

Prove by induction that $12^{n}+2\left(5^{n-1}\right)$ is a multiple of 7 for $n \in \mathbb{Z}^{+}$.
5. [Maximum mark: 26]
(a) (i) Factorize $t^{3}-3 t^{2}-3 t+1$, giving your answer as a product of a linear factor and a quadratic factor.
(ii) Hence find all the exact solutions to the equation $t^{3}-3 t^{2}-3 t+1=0$.
(b) Using de Moivre's theorem and the binomial expansion
(i) show that $\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta$;
(ii) write down a similar expression for $\sin 3 \theta$.
(c) (i) Hence show that $\tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}$.
(ii) Find the values of $\theta, 0^{\circ} \leq \theta \leq 180^{\circ}$, for which this identity is not valid.
(d) Using the results from parts (a) and (c), find the exact values of $\tan 15^{\circ}$ and $\tan 75^{\circ}$.

