MARKSCHEME

November 2006

MATHEMATICS

Higher Level

Paper 3

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IBCA.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy: often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown (or working which gains no other marks).
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Write the marks in red on candidates' scripts, in the right hand margin.

- Show the breakdown of individual marks awarded using the abbreviations M1, A1, etc.
- Write down the total for each question (at the end of the question) and circle it.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means M1 for an attempt to use an appropriate method (e.g. substitution into a formula) and A1 for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

$3 \quad N$ marks

Award \mathbf{N} marks for correct answers where there is no working, (or working which gains no other marks).

- Do not award a mixture of N and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- For consistency within the markscheme, N marks are noted for every part, even when these match the mark breakdown. In these cases, the marks may be recorded in either form e.g. A2 or N2.

4
 Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value $(e . g \cdot \sin \theta=1.5)$, do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent A marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then write $-1(\mathbf{M R})$ next to the total. Subtract 1 mark from the total for the question. A candidate should be penalised only once for a particular mis-read.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. The mark should be labelled (d) and a brief note written next to the mark explaining this decision.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).
Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award A1 for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy.

- Rounding errors: only applies to final answers not to intermediate steps.
- Level of accuracy: when this is not specified in the question the general rule applies: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Candidates should be penalized once only IN THE PAPER for an accuracy error (AP). Award the marks as usual then write (AP) against the answer. On the front cover write -1 (AP). Deduct 1 mark from the total for the paper, not the question.

- If a final correct answer is incorrectly rounded, apply the $\boldsymbol{A P}$.
- If the level of accuracy is not specified in the question, apply the $\boldsymbol{A P}$ for correct answers not given to three significant figures.

If there is no working shown, and answers are given to the correct two significant figures, apply the $\boldsymbol{A P}$. However, do not accept answers to one significant figure without working.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Examples

Exemplar material is available under examiner training on http://courses.triplealearning.co.uk. Please refer to this material before you start marking, and when you have any queries. Please also feel free to contact your Team Leader if you need further advice.

SECTION A

Statistics and probability

1.

(a)	H_{0} : Mean loss $=5 \mathrm{~kg}$	$\begin{array}{lr}\text { A1 } & \\ \text { A1 } & \\ & \text { [2 marks] }\end{array}$	
	H_{1} : Mean loss < 5 kg		
(b)	The losses are		N4
	6.84 .73 .94 .32 .05 .93 .63 .32 .84 .2	(M1)(A1)A1A1	
	Using a one-sided t-test on difference between weights before and after $t=1.90$ (accept + or -)		
	p-value $=0.0447$	A2	
	(i) At 1%, insufficient evidence to reject H_{0} (critical value 2.821)	A1	
	(ii) At 10%, reject H_{0} (critical value 1.383$)$	A1	[8 marks]
(c)	The differences are a random sample from a normal distribution.	R1	
			[1 mark]
		Total	[11 marks]

2. (a) $\bar{x}=12.6$
(A1)
$\mathrm{SE}=\frac{2.5}{5}=0.5$
90% confidence limits are using 1.645
(A1)
$12.6 \pm 1.645 \times 0.5$
giving [11.8, 13.4]
M1A1
A1
N6
[6 marks]
(b) $\quad \mathrm{P}(X \leq 14)=\Phi\left(\frac{14-\mu}{2.5}\right)=0.55$

M1A1

$$
\frac{14-\mu}{2.5}=0.1256 \ldots
$$

M1A1

$$
\mu=13.7
$$

A1
Not consistent because outside confidence interval.

A1
[6 marks]
Total [12 marks]
3. The hypotheses are
H_{0} : The model fits the data A1
H_{1} : The model does not fit the data A1
Expected frequencies are given by $\mathrm{E}(X=x)=420 \times \frac{x}{21}$
(M1)(A1)

x	f_{o}	f_{e}
1	25	20
2	46	40
3	64	60
4	82	80
5	99	100
6	104	120

$$
\begin{array}{lr}
\chi^{2} & =\frac{5^{2}}{20}+\frac{6^{2}}{40}+\frac{4^{2}}{60}+\frac{2^{2}}{80}+\frac{1^{2}}{100}+\frac{16^{2}}{120} \\
& =4.61 \\
\text { DF } & =5 \\
\text { Critical value }=11.07 \text { at the } 5 \% \text { level. } & \text { A1 } \\
\text { We conclude that the claim is accepted. } & \text { A1 } \\
\text { W1 } \\
\hline
\end{array}
$$

[14 marks]
4. (a) $X \sim B(20,0.15)$
(M1)
A2
N2 [3 marks]
(b) By trial and error around sensible values of n, $\mathrm{P}(X \geq 5 \mid 30$ bought $)=0.476$
$\mathrm{P}(X \geq 5 \mid 31$ bought $)=0.506$
\therefore Minimum number $=31$
(c) (i) $\quad \mathrm{P}(X=x)=\binom{x-1}{4} 0.15^{5} \times 0.85^{x-5}$
(ii) X is negative binomial with $r=5, p=0.15$

$$
\mathrm{E}(X)=\frac{r}{p}=33.3
$$

M1A1
(iii) $\frac{\mathrm{P}(X=x)}{\mathrm{P}(X=x-1)}=\frac{\binom{x-1}{4} 0.15^{5} 0.85^{x-5}}{\binom{x-2}{4} 0.15^{5} 0.85^{x-6}}$

$$
=\frac{(x-1)!}{(x-5)!} \frac{(x-6)!}{(x-2)!} 0.85
$$

$$
=\frac{0.85(x-1)}{x-5}
$$

(iv) $\mathrm{P}(X=x)>\mathrm{P}(X=x-1)$ as long as $\frac{0.85(x-1)}{x-5}>1$ $x<\frac{4.15}{0.15}$
$=\frac{83}{3}$
It follows that $p_{27}>p_{26}$
but $p_{28} \leq p_{27}$
It follows that the most probable value of X is 27 .

M1A1

M1A1
AG

M1A1
A1
AG
M1A1
A1
R1
[16 marks]
Total [23 marks]

SECTION B

Sets, relations and groups

1. (a)

A1A1A1
[3 marks]
(b) $D^{\prime} \cup C$

$$
\begin{array}{lr}
=\left(A^{\prime} \cup B\right)^{\prime} \cup(A \cap B) & \text { M1A1 } \\
=\left(A \cap B^{\prime}\right) \cup(A \cap B) & \text { A1 } \\
=A & \text { AG }
\end{array}
$$

[3 marks]
(c) $D \cap E$
$=\left(A^{\prime} \cup B\right) \cap(A \cup B) \quad$ M1
$=\left(A^{\prime} \cap A\right) \cup\left(A^{\prime} \cap B\right) \cup(B \cap A) \cup(B \cap B) \quad$ A1
$=B \cup\left(A^{\prime} \cap A\right)$
(A1)

$$
=B \cup \varnothing
$$

$$
=B
$$

[3 marks]
Total [9 marks]
2. (a) (i)

\bullet_{8}	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$
$\mathbf{1}$	1	3	5	7
$\mathbf{3}$	3	1	$\mathbf{7}$	5
$\mathbf{5}$	$\mathbf{5}$	7	1	3
$\mathbf{7}$	7	5	3	$\mathbf{1}$

A4

Note: Award $\mathbf{A} \mathbf{3}$ for 1 error, $\boldsymbol{A} \mathbf{2}$ for 2 errors and $\boldsymbol{A} \mathbf{0}$ for 3 or more errors.
(ii)

$*_{15}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{9}$	$\mathbf{1 2}$
$\mathbf{3}$	$\mathbf{9}$	3	$\mathbf{1 2}$	6
$\mathbf{6}$	3	6	9	12
$\mathbf{9}$	12	9	6	3
$\mathbf{1 2}$	6	12	$\mathbf{3}$	9
H				

Note: Award $\mathbf{A 1}$ for 1 error, $\boldsymbol{A 0}$ for 2 or more errors.
(b) $\quad H$: Identity is 6 : order of 3 is 4
order of 9 is 2
order of 12 is 4
G : Identity is 1 : order of 3 is 2
A1
order of 5 is 2 order of 7 is 2

The orders of G and H are not comparable.
(M1)
A1
[5 marks]
Total [11 marks]
3. (a) $\quad R_{1}$ is not an equivalence relation A1
because it is not reflexive ($a R a$ does not hold). $\quad \boldsymbol{R 1}$
R_{2} is not an equivalence relation A1
because it is not symmetric $\quad \boldsymbol{R 1}$
$B R A$ is true whereas $A R B$ does not hold. A1
R_{3} is not an equivalence relation A1
because it is not transitive R1
$d R f$ and $f R e$ are true, whereas $d R e$ does not hold. A2
Note: For all 3 conditions, accept any counter example.
R_{4} is an equivalence relation A1
because it is reflexive (there are only 1s on the diagonal), A1
symmetric (the table is symmetric with respect to the diagonal) A1
transitive (all the 0 on the square of the matrix are also 0 on the matrix) A3
(other method: checking all the cases).
(b) The equivalence classes are $\{D, F\}$ and $\{E, G\}$.

A1A1
[2 marks]
Total [17 marks]
4. (a) Range of f is $y>2$ therefore f is not surjective on \mathbb{R}^{+}

R2
[2 marks]

M1
A1
A1
therefore g is injective
let $g(x, y)=(u, v)$
then $u=3 x+2 y$
$v=2 x+y$
solving simultaneous equations gives
$x=-u+2 v$
A1
$y=2 u-3 v$
A1
therefore g is surjective
and hence $g^{-1}(u, v)=(-u+2 v, 2 u-3 v)$
(c) (i) h is not injective
because, (x, y) and (y, x) have the same image, $x \neq y$
(ii) h is not surjective

Any counter example satisfying $\left\{(x, y) \mid x^{2}<4 y\right\}$
5. Let e be the identity element of G.

Let $a, b \in G$
Then $a^{2}=e$
$b^{2}=e$
$a b a b=e$
Hence $a(a b a b) b=a e b \quad$ M1A1
$a^{2} b a b^{2}=a b$
$b a=a b$
So G is abelian

A1
A2
[5 marks]
Total [16 marks]

M1

A1
A1

A1
A1
A1
R1
R1
A2
[9 marks]
1
1

SECTION C

Series and differential equations

1. (a) $\frac{u_{n+1}}{u_{n}}=\frac{n!}{(n+1)!}$

$$
=\frac{1}{n+1} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Therefore series convergent by ratio test.
(b) $\frac{2^{n}}{n!}<1, \forall n>3$
$2^{n}<n!, \forall n>3$
$1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\ldots<1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots$
M1A1
so $S_{\infty}<\frac{1}{1-\frac{1}{2}} \quad(=2)$
A1
that is $S_{\infty}<2$
(c) $\mathrm{e}-1$

A1
[1 mark]
Total [9 marks]
2. (a) Putting $f(x)=\ln x$

$$
\begin{array}{rlrl}
f(1) & =0 & \text { A1 } \\
f^{\prime}(x) & =\frac{1}{x}, f^{\prime}(1)=1 & & \text { A1 } \\
f^{\prime \prime}(x) & =-\frac{1}{x^{2}}, f^{\prime \prime}(1)=-1 & & \text { A1 } \\
f^{\prime \prime \prime}(x) & =\frac{2}{x^{3}}, f^{\prime \prime \prime}(1)=2 & \text { A1 } \\
\ln x \approx(x-1) & +\frac{(x-1)^{2}}{2} \times(-1)+\frac{(x-1)^{3}}{6} \times 2 & \text { M1A1 } \\
& =x-1-\frac{1}{2}\left(x^{2}-2 x+1\right)+\frac{1}{3}\left(x^{3}-3 x^{2}+3 x-1\right) & & \text { A1 } \\
& =\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+3 x-\frac{11}{6} & & \text { AG }
\end{array}
$$

[7 marks]
(b) Integrating both sides of the above result
$x \ln x-x \approx \frac{x^{4}}{12}-\frac{x^{3}}{2}+\frac{3 x^{2}}{2}-\frac{11 x}{6}+C$
M1A1
Putting $\ln 1=0$ gives $C=-\frac{1}{4}$ so
(M1)A1
$\ln x \approx \frac{x^{3}}{12}-\frac{x^{2}}{2}+\frac{3 x}{2}-\frac{5}{6}-\frac{1}{4 x}$
A2
[6 marks]
(c) When $x=1.5$

$$
\ln x=0.4054 \ldots
$$

$\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+3 x-\frac{11}{6}=0.4166 \ldots$
$\frac{x^{3}}{12}-\frac{x^{2}}{2}+\frac{3 x}{2}-\frac{5}{6}-\frac{1}{4 x}=0.4062 \ldots$
The second approximation is nearer the time value and therefore better.
[4 marks]
Total [17 marks]
3. (a) METHOD 1

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\ln \left(\frac{1+x}{1-x}\right)\right) & =\frac{(1-x)}{(1+x)} \frac{(1-x+1+x)}{(1-x)^{2}} \\
& =\frac{2}{1-x^{2}}
\end{align*}
$$

M1A2

METHOD 2

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\ln (1+x)-\ln (1-x)) & =\frac{1}{1+x}+\frac{1}{1-x} \\
& =\frac{2}{1-x^{2}}
\end{aligned}
$$

M1A2

$$
A G
$$

(b) Put $y=v x$ so that $\frac{\mathrm{d} y}{\mathrm{~d} x}=v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}$

Substituting

$$
\begin{aligned}
x^{2}\left(v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}\right) & =x^{2}\left(1+v-v^{2}\right) \\
x \frac{\mathrm{~d} v}{\mathrm{~d} x} & =1-v^{2} \\
\frac{\mathrm{~d} x}{x} & =\frac{\mathrm{d} v}{1-v^{2}} \\
\ln x & =\int \frac{\mathrm{d} v}{1-v^{2}}+C \\
& =\frac{1}{2} \ln \left(\frac{1+v}{1-v}\right)+C
\end{aligned}
$$

$$
(\mathrm{M} 1)(\mathrm{A} 1)
$$

A1
A1
M1A1
A1

Substituting $\left(1, \frac{1}{2}\right)$

$$
\begin{aligned}
0 & =\frac{1}{2} \ln 3+C \text { giving } C=-\frac{1}{2} \ln 3 \\
\ln x^{2} & =\ln \left(\frac{x+y}{3(x-y)}\right) \\
3 x^{2} & =\frac{x+y}{x-y} \\
\text { giving } y & =\frac{3 x^{3}-x}{3 x^{2}+1}
\end{aligned}
$$

4. (a) (i) $\int_{-n}^{\alpha n} \frac{x d x}{1+x^{2}}=\frac{1}{2}\left[\ln \left(1+x^{2}\right)\right]_{-n}^{\alpha n}$

M1A1

$$
=\frac{1}{2} \ln \left(\frac{1+\alpha^{2} n^{2}}{1+n^{2}}\right)
$$

M1A1
(ii) $\quad \rightarrow \frac{1}{2} \ln \alpha^{2}$ or $\ln \alpha$ as $n \rightarrow \infty$

M1A1
[6 marks]
(b) Limit $=\lim _{x \rightarrow 0}\left(\frac{\beta \sec ^{2} \beta x-\beta \sec ^{2} x}{\beta \cos \beta x-\beta \cos x}\right)$

M1A1A1
$=\lim _{x \rightarrow 0}\left(\frac{2 \beta \sec ^{2} \beta x \tan \beta x-2 \sec ^{2} x \tan x}{-\beta \sin \beta x+\sin x}\right)$
A1A1
$=\lim _{x \rightarrow 0}\left(\frac{2 \beta^{2} \sec ^{4} \beta x+4 \beta^{2} \sec ^{2} \beta x \tan ^{2} \beta x-2 \sec ^{4} x-4 \sec ^{2} x \tan ^{2} x}{-\beta^{2} \cos \beta x+\cos x}\right)$
A1A1
$=\frac{2 \beta^{2}-2}{-\beta^{2}+1}$
A1
$=-2$
A1
[9 marks]
Total [15 marks]

SECTION D

Discrete mathematics

1. (a)

A2A2
(b) (i) $\quad G_{1}$ is not simple (some entries are "2"s)
G_{2} is simple (no entries on the diagonal and no double edge) $\boldsymbol{R 1}$
(ii) $\quad G_{1}$ is connected
(p connected to q connected to r connected to s connected to t)
G_{2} is connected (E connected to H connected to F and H connected to G; and E connected to K)
(iii) G_{1} is bipartite (take $\{p, r, t\}$ and $\{q, s\}$)
G_{2} is bipartite (take $\{P, R, Q\}$ and $\{T, S\}$)
(iv) G_{1} is not a tree (it contains two edges)

P	\rightarrow	S	\rightarrow
G_{2} is a tree \downarrow	\downarrow		$\boldsymbol{R 1 R 1}$
T	R		

(v) $\quad G_{1}$ contains a Eulerian trail (only two vertices have an odd degree) M1

Example: $r \rightarrow q \rightarrow p \rightarrow s \rightarrow r \rightarrow q \rightarrow t \rightarrow s \quad$ A1
G_{2} does not contain an Eulerian trail (it has more than two vertices of odd degree)

M1A1
[14 marks]
Total [18 marks]
2. This is equivalent to solving $-19 x+13 y=4$

Using Euclid's algorithm $19=13+6$

$$
13=2 \times 6+1
$$

Hence $1=13-2 \times 6=13-2(19-13)$

$$
=3 \times 13-2 \times 19
$$

Therefore $-19 \times 8+13 \times 12=4$
The general solution is $x=8-13 k$ $y=12-19 k \quad k \in \mathbb{Z}$
3. (a) There are 7 vertices so 6 choices must be made

Edge	Weight	Choice
BG	1	$1^{\text {st }}$
EF	1	$2^{\text {nd }}$
ED	2	$3^{\text {rd }}$
AB	4	$4^{\text {th }}$
BC	5	$5^{\text {th }}$
GC	5	Reject
DF	5	Reject
CF	6	$6^{\text {th }}$

(b) Total weight $1+1+2+4+5+6=19$
4. (a) If a graph is not simple then it must contain either a loop or a double
edge and therefore contains a cycle so that it cannot be a tree. Hence
4. (a) If a graph is not simple then it must contain either a loop or a double
edge and therefore contains a cycle so that it cannot be a tree. Hence
4. (a) If a graph is not simple then it must contain either a loop or a double
edge and therefore contains a cycle so that it cannot be a tree. Hence if it is a tree it must be simple.

M1A1R1

[3 marks]
(b) (i) Let A and B be the two subsets of vertices of the bipartite graph G. Then in the complement of G, A will have no edge
linking any of its elements to B. Hence the complement of G graph G. Then in the complement of G, A will have no edge
linking any of its elements to B. Hence the complement of G is not connected since it contains two unconnected subgraphs.

M1A2

(ii) Let H be the graph consisting of three vertices and no edge. Its complement is obviously not bipartite.

M1A2

[10 marks]
(R1)
M1A1
A1
(A1)
A1

A1
(A1)

M2A1

A1
A1
A1

A1
A1
[9 marks]

A2

Total [11 marks] Its complement is obviously not bipatite.
5. Since p divides $x^{p}+y^{p}, x^{p}-x$ and $y^{p}-y$,
then p divides $\left(x-x^{p}\right)+\left(y-y^{p}\right)+\left(x^{p}+y^{p}\right)=x+y \quad$ R2A1
So $x+y=k p$ where k is an integer M1A1
and $y=k p-x \quad$ M1A1
Therefore $x^{p}+y^{p}=x^{p}+(k p-x)^{p}=x^{p}+A p^{2}+p k p x^{p-1}-x^{p}$ where A is an integer.

M1A3
So $x^{p}+y^{p}=\left(A+k x^{p-1}\right) p^{2}$ and therefore is divisible by p^{2}. M1A1

