N06/5/MATHL/HP1/ENG/TZ0/XX/M+

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

MARKSCHEME

November 2006

MATHEMATICS

Higher Level

Paper 1

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IBCA.

Instructions to Examiners

Abbreviations

- *M* Marks awarded for attempting to use a correct **Method**; working must be seen.
- (*M*) Marks awarded for **Method**; may be implied by **correct** subsequent working.
- *A* Marks awarded for an **Answer** or for **Accuracy**: often dependent on preceding *M* marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- *N* Marks awarded for **correct** answers if **no** working shown (or working which gains no other marks).
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Write the marks in red on candidates' scripts, in the right hand margin.

- Show the breakdown of individual marks awarded using the abbreviations M1, A1, etc.
- Write down the total for each question (at the end of the question) and circle it.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *M0* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, *e.g. MIA1*, this usually means *M1* for an **attempt** to use an appropriate method (*e.g.* substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

3 N marks

Award N marks for correct answers where there is **no** working, (or working which gains no other marks).

- Do **not** award a mixture of *N* and other marks.
- There may be fewer N marks available than the total of M, A and R marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- For consistency within the markscheme, *N* marks are noted for every part, even when these match the mark breakdown. In these cases, the marks may be recorded in either form *e.g. A***2** or *N***2**.

4 Implied marks

Implied marks appear in **brackets e.g.** (M1), and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (**FT**) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s). To award **FT** marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value (*e.g.* $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (**MR**). Apply a **MR** penalty of 1 mark to that question. Award the marks as usual and then write $-1(\mathbf{MR})$ next to the total. Subtract 1 mark from the total for the question. A candidate should be penalized only once for a particular mis-read.

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value (*e.g.* $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. The mark should be labelled (d) and a brief **note** written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by **EITHER**...OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, *accept* equivalent forms.

- As this is an international examination, accept all alternative forms of **notation**.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x-3)$, the markscheme gives:

$$f'(x) = (2\cos(5x-3))5 \quad (=10\cos(5x-3))$$
 A1

Award A1 for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy.

- Rounding errors: only applies to final answers not to intermediate steps.
- Level of accuracy: when this is not specified in the question the general rule applies: *unless* otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Candidates should be penalized once only IN THE PAPER for an accuracy error (AP). Award the marks as usual then write (AP) against the answer. On the front cover write -1(AP). Deduct 1 mark from the total for the paper, not the question.

- If a final correct answer is incorrectly rounded, apply the *AP*.
- If the level of accuracy is not specified in the question, apply the *AP* for correct answers not given to three significant figures.

If there is no working shown, and answers are given to the correct two significant figures, apply the *AP*. However, do not accept answers to one significant figure without working.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Examples

Exemplar material is available under examiner training on http://courses.triplealearning.co.uk. Please refer to this material before you start marking, and when you have any queries. Please also feel free to contact your Team Leader if you need further advice. - 6 - N06/5/MATHL/HP1/ENG/TZ0/XX/M+

QUESTION 1

- (a) $\begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 4 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & -7 & 3 \\ 0 & 2 & -1 \\ -1 & 3 & -1 \end{pmatrix}$ A2 N2
- (b) In matrix form Ax = B or $x = A^{-1}B$ x = 2, y = -3, z = 4 *M1 A1A1A1 N0*

QUESTION 2

$$\left(\sqrt{3}-2\right)^{3} = \left(\sqrt{3}\right)^{3} + 3\left(\sqrt{3}\right)^{2}\left(-2\right)^{1} + 3\left(\sqrt{3}\right)\left(-2\right)^{2} + \left(-2\right)^{3}$$

$$= 3\sqrt{3} + (-18) + 12\sqrt{3} - 8$$
(MI)A1

$$=15\sqrt{3}-26$$
 (accept $a=15$, $b=-26$) A1A1 N3

QUESTION 3

(a)
$$f'(x) = \frac{1}{3x+1} \times 3 \quad \left(=\frac{3}{3x+1}\right)$$
 MIA1 N2

(b) Hence when x = 2, gradient of tangent $=\frac{3}{7}$ (A1)

$$\Rightarrow \text{ gradient of normal is } -\frac{7}{3} \tag{A1}$$

$$y - \ln 7 = -\frac{7}{3}(x - 2)$$

$$y = -\frac{7}{3}x + \frac{14}{3} + \ln 7$$
MI
AI
N4

(accept y = -2.33x + 6.61)

QUESTION 4

(a)

P(same colour) = P(R \cap R) + P(B \cap B)
=
$$\left(\frac{4}{9}\right)\left(\frac{7}{9}\right) + \left(\frac{5}{9}\right)\left(\frac{2}{9}\right)$$
 (M1)

$$= \left(\frac{28}{81}\right) + \left(\frac{10}{81}\right) = \frac{38}{81} \quad (= 0.469)$$
 A1 N2

(b)
$$P(\text{first red}|\text{different}) = \frac{P(R \text{ and then } B)}{P(R \text{ and then } B) + P(B \text{ and then } R)}$$
 (M1)

Note: Accept correct tree diagram for selections.

$$=\frac{\left(\frac{4}{9}\right)\left(\frac{2}{9}\right)}{\left(\frac{4}{9}\right)\left(\frac{2}{9}\right)+\left(\frac{5}{9}\right)\left(\frac{7}{9}\right)}\left(=\frac{\left(\frac{4}{9}\right)\left(\frac{2}{9}\right)}{1-\left(\frac{38}{81}\right)}=\frac{\left(\frac{8}{81}\right)}{\left(\frac{43}{81}\right)}\right)$$

$$AI$$

$$=\frac{8}{43}$$
 (=0.186) A1 NI

QUESTION 5

$$S_{\infty} = \frac{a}{1-r} = 32 \text{ and } S_4 = \frac{a(1-r^4)}{1-r} = 30$$
 (M1)
 $\Rightarrow a = 32(1-r)$ M1

$$\Rightarrow a = 32(1-r)$$

$$\Rightarrow 32(1-r^4) = 30$$

$$\Rightarrow r = 0.5 \text{ and } a = 16$$

$$\Rightarrow r = 0.5 \text{ and } a = 16$$
 AIA1

$$\Rightarrow S_{\infty} - S_8 = 32 - 16 \left(\frac{1 - 0.5^{\circ}}{1 - 0.5} \right)$$
 M1

Note: Allow FT on incorrect a / r.

$$=0.125 = \frac{1}{8}$$
 A1 N2

→ 0

FV2

QUESTION 6

EITHER

$\tan^2 2\theta = 1$		
$\Rightarrow \tan 2\theta = \pm 1$	A1	
$\theta = \pm \frac{3\pi}{4}, \pm \frac{\pi}{4}$	A1	
$\Rightarrow \theta = \pm \frac{3\pi}{8}, \ \pm \frac{\pi}{8} \text{ or } \pm 1.18, \pm 0.393$	AIAIAIAI	N4

OR y $y = \tan^2 20 - 1$

AIA1

 $\theta = \pm \frac{3\pi}{8}, \ \pm \frac{\pi}{8} \text{ or } \pm 1.18, \pm 0.393$ AIAIAIAI

QUESTION 7

(a)	$P(X \le 1) = 0.2$		
	P(X=0) + P(X=1) = 0.2	(M1)	
	$\Rightarrow e^{-\lambda} + e^{-\lambda}\lambda = 0.2$		
	$\Rightarrow e^{-\lambda}(1+\lambda) = 0.2$	A1	
	$\Rightarrow \lambda = 2.99$	A2	N2

(b) $P(X \le 2) = 0.424$ (accept 0.425) A2 N2

QUESTION 8

(a) $V = 100(1+0.05)^{20}$ (M1) V = \$265 (accept \$265.33) A1 N2

(b)
$$100\left(1+\frac{5}{1200}\right)^n > 265$$
 (M1)

$$n\ln\left(1+\frac{5}{1200}\right) > \ln\left(2.65\right) \qquad MIA1$$
$$\Rightarrow n = 235 \qquad AI \qquad N2$$

QUESTION 9

(a)
$$P(\text{weight} > 525 \text{ grams}) = P\left(z > \frac{525 - 450}{50}\right)$$

= $P(z > 1.5)$ (MI)
= 0.0668 AI
Expected number $\ge 525 \text{ grams} = (2000)(0.0668)$
= 134 AI N2

(b)

$$\Phi(z) = 0.75 \Rightarrow z = 0.6745$$
 (A1)

 $Q_3 = 450 + 50 \times 0.6745$
 A1

 $Q_3 = 484$
 A1

QUESTION 10

Solving simultaneously	(M1)
$2z_1 + 3z_2 = 7$	
$2z_1 + 2iz_2 = 8 + 8i$	
$z_2(2i-3) = 1+8i$	(A1)

$$z_2 = \frac{1+8i}{2i-3} = 1-2i$$
M1A1
7, 3(1, 2i)

$$z_{1} = \frac{7 - 3(1 - 2i)}{2} \text{ or } 4 + 4i - i(1 - 2i)$$

$$= 2 + 3i$$
M1 A1 N4

QUESTION 11

The direction vectors of L_1 and L_2 are

$$L_{1} = \begin{pmatrix} 2\\3\\-1 \end{pmatrix}, L_{2} = \begin{pmatrix} -1\\4\\2 \end{pmatrix}$$
 A1A1

Note: Allow *FT* on incorrect vectors.

$$L_1 \bullet L_2 = 8$$
 A1

$$|L_1| = \sqrt{14}, |L_2| = \sqrt{21}$$
 AI

$$\cos\theta = \frac{1}{\sqrt{14}\sqrt{21}} \tag{A1}$$

$$\theta = 1.09 \text{ radians } (62.2^\circ)$$
 A1

QUESTION 12

Since range goes from -4 to $2 \Rightarrow a = 3$	(M1)A1
Since curve is shifted right by $\frac{\pi}{4}$, $\Rightarrow b = -\frac{\pi}{4}$	(M1)A1

Since curve has been shifted in vertical by one unit down $\Rightarrow c = -1$ (M1)A1

$$a=3$$
 $b=-\frac{\pi}{4}$ $c=-1$ N2N2N2

QUESTION 13

General point on line is $(1 + \lambda, \lambda, -2 - 2\lambda)$ (MI)(A1) Intersection of line and plane $1 + \lambda + \lambda - 2(-2 - 2\lambda) + 3 = 0$ $\Rightarrow \lambda = \frac{-4}{3}$ MIA1

Note: Allow FT on incorrect λ .

$$\Rightarrow \text{ at } P' \lambda = 2\left(\frac{-4}{3}\right) \qquad \qquad MI$$

$$\Rightarrow P' \text{ is } \left(\frac{-5}{3}, \frac{-8}{3}, \frac{10}{3}\right) \qquad \qquad AI \qquad N3$$

M1A1

QUESTION 14

$$9\log_5 x = 25\log_x 5$$

$$\Rightarrow 9\log_5 x = \frac{25}{\log_5 x}$$

$$\Rightarrow \log_5 x = \frac{\pm 5}{3}$$
 A1

$$\Rightarrow x = 5^{\frac{5}{3}} \text{ or } x = 5^{\frac{-5}{3}} \text{ (accept } p = \pm 5, q = 3)$$
 A1A1 N0

QUESTION 15

(a) **EITHER**

$\Rightarrow 2x^{2} + (k-2)x + k + 4 = 0$ Since curves only touch this equation has only one solution for x $\Rightarrow \Delta = b^{2} - 4ac = 0$ $\Rightarrow (k-2)^{2} - 4(2)(k+4) = 0$ $\Rightarrow k^{2} - 12k - 28 = 0$ $\Rightarrow k = -2$ A1 N	At the point where curves touch $x^2 + kx + k = -x^2 + 2x - 4$		
Since curves only touch this equation has only one solution for x $\Rightarrow \Delta = b^{2} - 4ac = 0$ $\Rightarrow (k-2)^{2} - 4(2)(k+4) = 0$ $\Rightarrow k^{2} - 12k - 28 = 0$ $\Rightarrow k = -2$ A1 N	$\Rightarrow 2x^2 + (k-2)x + k + 4 = 0$	A1	
$\Rightarrow \Delta = b^{2} - 4ac = 0 \qquad M1$ $\Rightarrow (k-2)^{2} - 4(2)(k+4) = 0$ $\Rightarrow k^{2} - 12k - 28 = 0 \qquad A1$ $\Rightarrow k = -2 \qquad A1 \qquad N$	Since curves only touch this equation has only one solution for <i>x</i>		
$\Rightarrow (k-2)^2 - 4(2)(k+4) = 0$ $\Rightarrow k^2 - 12k - 28 = 0$ $\Rightarrow k = -2$ A1 N	$\Rightarrow \Delta = b^2 - 4ac = 0$	<i>M1</i>	
$\Rightarrow k^{2} - 12k - 28 = 0 \qquad A1$ $\Rightarrow k = -2 \qquad A1 \qquad N$	$\Rightarrow (k-2)^2 - 4(2)(k+4) = 0$		
$\Rightarrow k = -2$ A1 N	$\Rightarrow k^2 - 12k - 28 = 0$	A1	
	$\Rightarrow k = -2$	A1	N2

OR

At the point P,	
$x^2 + kx + k = -x^2 + 2x - 4$	
$2x^2 + (k-2)x + k + 4 = 0$	A1
and	
2x + k = -2x + 2	

$$2x + k = -2x + 2$$

$$4x = 2 - k$$
Eliminating x,
$$(2 - k)^{2} \quad (k - 2)(2 - k) \quad (k - 2)(2 - k) \quad (k - 2)(2 - k) = 0$$

$$2\frac{(2-k)}{16} + \frac{(k-2)(2-k)}{4} + k + 4 = 0$$

$$k^{2} - 12k - 28 = 0$$

$$k = -2$$

A1
N2

(b) When
$$k = -2$$

 $2x^2 - 4x + 2 = 0$
 $x = 1, y = -3$
MI
AI
NI

N0

QUESTION 16

si	$\frac{n C}{m} = \frac{\sin 30^{\circ}}{m}$		
	7 5		
=	$\Rightarrow \sin C = \frac{7\sin 30^{\circ}}{5} \qquad \qquad$	IA1	
	$C = 44.4^{\circ}$	A1	
	or $C = 135.6^{\circ}$	A1	
=	$B = 105.6^{\circ} \text{ or } 14.4^{\circ}$	A1	
=	> Difference in area $\triangle ABC = \frac{1}{2}ac(\sin B_1 - \sin B_2)$		
	$=\frac{1}{2}(5)(7)(\sin 105.6^{\circ} - \sin 14.4^{\circ})$		
	$=12.5 \text{ cm}^2$	AI N	12
Note:	There are several ways of solving this problem which require the acute value of C]	
	to be found. Award <i>M1A1A1</i> for this and then <i>A1A1A1</i> for what follows.		

QUESTION 17

$\int \frac{1}{y} \mathrm{d}y = \int \frac{4x}{\left(x+2\right)^2} \mathrm{d}x$	M1
Let $u = x + 2 \implies x = u - 2$	
du = dx	M1
$\ln y = \int \frac{4(u-2)}{u^2} \mathrm{d}u$	
$=\int \frac{4}{u} - \frac{8}{u^2} \mathrm{d}u$	A1
$\ln y = 4 \ln u + 8u^{-1} + c$	A1
$\ln y = 4 \ln (x+2) + \frac{8}{x+2} + c$	A1
$(-1,1) \Rightarrow c = -8$	A1
$\Rightarrow \ln y = 4\ln(x+2) + \frac{8}{x+2} - 8$	

(A1)

A1

QUESTION 18

Curves meet at (0, 0) and (k, k)

Area =
$$\int_{0}^{k} \left(k^{\frac{1}{2}} x^{\frac{1}{2}} - \frac{x^{2}}{k} \right) dx = 12$$
 MIAI
 $\Rightarrow \left[k^{\frac{1}{2}} \frac{2}{3} x^{\frac{3}{2}} - \frac{x^{3}}{3k} \right]_{0}^{k} = 12$ AI

$$\Rightarrow \left[\frac{2}{3}k^2 - \frac{k^2}{3}\right] = 12$$

$$\Rightarrow \frac{k^2}{3} = 12$$
$$\Rightarrow k = 6$$

QUESTION 19

(a)
$$A = 2\pi x^2$$
 (M1)
 $\frac{dA}{dt} = 4\pi x \frac{dx}{dt}$

$$\frac{dt}{dt} = \frac{10}{4\pi \times 2}$$
AI
AI

$$=\frac{5}{4\pi}$$
 (0.398) A1

(b)
$$V = \pi x^3$$

 $\frac{dV}{dt} = 3\pi x^2 \frac{dx}{dt}$
 $= 3\pi \times 2^2 \times \frac{5}{4\pi}$
M1

QUESTION 20

$\hat{A} + \hat{B} + \hat{C} = \pi$	M1	
$\Rightarrow \hat{A} + \hat{B} = \pi - \hat{C}$	A1	
$\Rightarrow \tan(\hat{A} + \hat{B}) = \tan(\pi - \hat{C})$	M1	
$\Rightarrow \frac{\tan \hat{A} + \tan \hat{B}}{1 - \tan \hat{A} \tan \hat{B}} = -\tan \hat{C}$	AIAI	
$\Rightarrow \tan \hat{A} + \tan \hat{B} = -\tan \hat{C} + \tan \hat{A} \tan \hat{B} \tan \hat{C}$	A1	
$\Rightarrow \tan \hat{A} + \tan \hat{B} + \tan \hat{C} = \tan \hat{A} \tan \hat{B} \tan \hat{C}$	AG	NO