

MATHEMATICS HIGHER LEVEL PAPER 1

Wednesday 3 May 2006 (afternoon)

2 hours

2206-7204

(Candi	idate	sessi	ion n	umbe	er	

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all the questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working. Working may be continued below the lines, if necessary.

1.	In an arithmetic sequence the second term is 7 and the sum of the first five terms is 50. Find the common difference of this arithmetic sequence.

(a) Write z_2 in modulus-argument form.

(b) Find the value of r if $|z_1 z_2^3| = 2$.

	•	 •	•		•				•	•			•			•							•			•																		•									•		 									•
•	•	 •	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 	•	•	•	•	•	•	•	•	•

-3-

.....

Th	e graph	of $y =$	$=2x^2$	+4x+	/ is tr	ansiat	ca usii	ng me	vecto	$\begin{bmatrix} -1 \end{bmatrix}$	J. Fi	nd the	e equa	ition o	f the
tra	nslated	graph,	, givin	ng you	r answ	er in t	he for	y =	$ax^2 +$	bx + c	•				
	t f(x)-	- 3 x ² _		Fine	the v		of m fo								
	t $f(x)$ aph of f		- x + 4	· · · · · · ·	the v										
	ph of <i>J</i>			. Finc		alues (of <i>m</i> fo	r whic	ch the	line y	r = mx	c+1 is	s a tan	gent to	o the
	iph of <i>J</i>					alues o	of <i>m</i> fo	r whic	ch the	line y	y = mx	c+1 is	s a tan	gent to	o the
	iph of <i>J</i>					alues o	of <i>m</i> fo	r whic	ch the	line y	y = mx	c+1 is	s a tan	gent to	o the
	iph of <i>J</i>					alues o	of <i>m</i> fo	r whic	ch the	line y	y = mx	c+1 is	s a tan	gent to	o the
	iph of <i>J</i>					alues o	of <i>m</i> fo	r whic	ch the	line y	y = mx	c+1 is	s a tan	gent to	o the
	iph of <i>J</i>					alues o	of <i>m</i> fo	r whic	ch the	line y	y = mx	c+1 is	s a tan	gent to	o the
	iph of <i>J</i>					alues o	of <i>m</i> fo	r whic	ch the	line y	y = mx	c+1 is	s a tan	gent to	o the
	iph of <i>J</i>					alues o	of <i>m</i> fo	r whic	ch the	line y	y = mx	c+1 is	s a tan	gent to	o the
	iph of <i>J</i>					alues o	of <i>m</i> fo	r whic	ch the	line y	y = mx	c+1 is	s a tan	gent to	o the
	iph of <i>J</i>					alues o	of <i>m</i> fo	r whic	ch the	line y	y = mx	c+1 is	s a tan	gent to	o the
	iph of <i>J</i>					alues o	of <i>m</i> fo	r whic	ch the	line y	y = mx	c+1 is	s a tan	gent to	o the
	iph of <i>J</i>					alues o	of <i>m</i> fo	r whic	ch the	line y	y = mx	c+1 is	s a tan	gent to	o the

5.	The polynomial $P(x) = 2x^3 + ax^2 - 4x + b$ is divisible by $(x-1)$ and by $(x+3)$. Find value of a and of b .	the

6. The following is the cumulative frequency diagram for the heights of 30 plants given in centimetres.

(a) Use the diagram to estimate the median height.

.....

(b) Complete the following frequency table.

Height (h)	Frequency
0≤ <i>h</i> <5	4
5≤ <i>h</i> <10	9
10≤ <i>h</i> <15	
15≤ <i>h</i> <20	
20≤ <i>h</i> <25	

(c)	H	er	IC6	9 6	es	t 11	m	at	te	t	he	1 (n	e	aı	n	h	eı	18	;h	t.																		

7. In the obtuse-angled triangle ABC, AC = 10.9 cm, BC = 8.71 cm and $B\hat{A}C = 50^{\circ}$.

Find the area of triangle ABC.

						 																															 				•	 								
	•			•																																														
 •	•																																																	
	•	•																																																•
	•	•	 •				-																																								•	•	٠	•
	•	•	 •																																														•	•
	•	•																																															•	
	•		 •	•																																													•	•
	•		 •	•																																														•
 •	•	•	 •	•	•	 	•	•			•	•	•		 •	•	•	٠	•	•	٠	•	•	•	•	•		 •	•	•	•	•		٠	•	•	 •	•	•	•		 •	٠	•	•	•		•	٠	•
 •	•	•		•	•		•	•			•	•	•			•	•	٠	•	•	•	•	•	•	•	•		 •	•	•	•		 •		•	•	 	•	•	•	-	 		•	•				٠	

Solve $ \ln(x-$	+3) =1. 0	Give your	answers	in exact	form.	 	
Solve ln (x -	+3) =1. 0	Give your	answers	in exact	form.	 	
Solve ln (<i>x</i> -	+3) =1. 6	Give your	answers	in exact	form.	 	
Solve ln (<i>x</i> -	+3) =1. 0	Give your	answers	in exact	form.	 	
Solve ln (<i>x</i> -	+3) =1. 6	Give your	answers	in exact	form.	 	
Solve ln (<i>x</i> -	+3) =1. 6	Give your	answers	in exact	form.	 	
Solve ln (<i>x</i> -	+3) =1. 6	Give your	answers	in exact	form.	 	
Solve ln (<i>x</i> -	+3) =1. 6	Give your	answers	in exact	form.	 	
Solve ln (x -	+3) =1. 6	Give your	answers	in exact	form.		
Solve ln (x -	+3) =1. 0	Give your	answers	in exact	form.		
Solve ln (x -	+3) =1. 6	Give your	answers	in exact	form.		

10.	Let $f(x) = 2^{0.5x}$ and $g(x) = 3^{-0.5x} + \frac{3}{3}$. Let R be the region completely enclosed by the
	graphs of f and g , and the y -axis. Find the area of R .

11. Let
$$\boldsymbol{a} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$
, $\boldsymbol{b} = \begin{pmatrix} -1 \\ p \\ 6 \end{pmatrix}$ and $\boldsymbol{c} = \begin{pmatrix} 2 \\ -4 \\ 3 \end{pmatrix}$.

(a) Find $\mathbf{a} \times \mathbf{b}$.

(b) Find the value of p, given that $\mathbf{a} \times \mathbf{b}$ is parallel to	(b)	Find the	value of p ,	given that	$a \times b$	is parallel to	c.
---	-----	----------	----------------	------------	--------------	----------------	----

 •		 •	•	•	•	 	 •	٠	•	•	-	•	٠	•	•	•	•	•	•	•	٠	•	•	-	•			 	•	 	-	-		-	 	 	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

12.	Find $\int e^{2x} \sin x dx$.

.....

- 13. Let A and B be events such that $P(A) = \frac{1}{5}$, $P(B|A) = \frac{1}{4}$ and $P(A \cup B) = \frac{7}{10}$.
 - (a) Find $P(A \cap B)$.
 - (b) Find P(B).

((c)	Show	that A	and R	are not	independ	lent
۱	(C) SHOW	шаі л	and D	arc not	i iiiucpciii	ıcııı

- **14.** Let $f(x) = \cos^3(4x+1)$, $0 \le x \le 1$.
 - (a) Find f'(x).

(b)	Find the exact values of the three roots of $f'(x) = 0$.

•	•	•	•	•	•	•	•	 •	•	•	•	•	 •	•	•	•	 •	•	•	•	 •	•	•	•	•	•	 	•	•	•	•	 •	•	• •	•	 •	•	 •	•	•	 •	•	 •	•	 	•	

 	• • • • • • • • • • • • • • • • • • • •	

.....

- 15. Let f be the function $f(x) = x \arccos x + \frac{1}{2}x$ for $-1 \le x \le 1$ and g the function $g(x) = \cos 2x$ for $-1 \le x \le 1$.
 - (a) On the grid below, sketch the graph of f and of g.

– 13 –

- (b) Write down the solution of the equation f(x) = g(x).
- (c) Write down the range of g.

 	 	 	 	 ٠.	 	 			 		 		 	 		 			
 	 	 	 	 ٠.	 	 			 		 		 	 		 			

16.		number of car accidents occurring per day on a highway follows a Poisson distribution mean 1.5.
	(a)	Find the probability that more than two accidents will occur on a given Monday.
	(b)	Given that at least one accident occurs on another day, find the probability that more than two accidents occur on that day.

- 17. Let $\mathbf{A} = \begin{pmatrix} 2 & 6 \\ k & -1 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} h & 3 \\ -3 & 7 \end{pmatrix}$, where h and k are integers. Given that $\det \mathbf{A} = \det \mathbf{B}$ and that $\det \mathbf{A} \mathbf{B} = 256h$,
 - (a) show that h satisfies the equation $49h^2 130h + 81 = 0$;

(b)	hence	find	the	value	of k .

Give	en that 3^{x+}		$\mathrm{d}x$					
(a)	In how r	nany diffe	rent ways	can they be	seated?	ix people in		
Ther (a) (b)	In how r	many differ	rent ways	can they be	seated?	who must sit	the room.	other
(a)	In how r	many differ	rent ways	can they be	seated? hree sisters vup be seated	who must sit?		
(a)	In how r	nany differ roup of size many differ	rent ways of x people, frent ways	can they be there are the can the gro	ree sisters vup be seated	who must sit?	t next to each	
(a)	In how r	nany differ roup of size many differ	rent ways of x people, frent ways	can they be there are the can the gro	ree sisters vup be seated	who must sit?	t next to each	
(a)	In how r	nany differ roup of size many differ	rent ways of x people, frent ways	can they be there are the can the gro	ree sisters vup be seated	who must sit?	t next to each	
a)	In how r	nany differ roup of size many differ	x people, rent ways	can they be there are the can the gro	ree sisters vup be seated	who must sit?	t next to each	
(a)	In how r	roup of size	x people, rent ways	can they be there are the can the gro	ree sisters vup be seated	who must sit	t next to each	
(a) (b)	In how r	nany differ	x people, rent ways	can they be there are the can the gro	ree sisters vup be seated	who must sit?	t next to each	
(a) (b)	In how r	nany differ	x people, rent ways	can they be there are the can the gro	ree sisters vup be seated	who must sit?	t next to each	
(a) (b)	In how r	nany differ	x people, rent ways	can they be there are the can the gro	ree sisters vup be seated	who must sit?	t next to each	
(a) (b)	In how r	nany differ	x people, rent ways	can they be there are the can the gro	ree sisters vup be seated	who must sit?	t next to each	
(a) (b)	In how r	nany differ	x people, rent ways	can they be there are the can the gro	ree sisters vup be seated	who must sit?	t next to each	

20. Each of the diagrams below shows the graph of a function f. Sketch on the given axes the graph of

− 17 −

(a) |f(-x)|;

(b) $\frac{1}{f(x)}$

