

MATHEMATICS HIGHER LEVEL PAPER 1

Name
Number

Friday 8 November 2002 (afternoon)

2 hours

INSTRUCTIONS TO CANDIDATES

- Write your name and candidate number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all the questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or to three significant figures.
- Write the make and model of your calculator in the box below *e.g.* Casio *fx-9750G*, Sharp EL-9600, Texas Instruments TI-85.

Calculator

Make	Model

EXAMINER	TEAM LEADER	IBCA
TOTAL /120	TOTAL /120	TOTAL /120

Maximum marks will be given for correct answers. Where an answer is wrong, some marks may be given for a correct method provided this is shown by written working. Working may be continued below the box, if necessary. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Incorrect answers with no working will normally receive **no** marks.

1. When the polynomial $x^4 + ax + 3$ is divided by (x-1), the remainder is 8. Find the value of a.

Working:	
	Answer:

2. The graph of the function $f(x) = 2x^3 - 3x^2 + x + 1$ is translated to its image, g(x), by the vector $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Write g(x) in the form $g(x) = ax^3 + bx^2 + cx + d$.

Working:

3. Find the coefficient of x^3 in the binomial expansion of $\left(1 - \frac{1}{2}x\right)^8$.

Working:	
	Answer:

4. Find the equations of all the asymptotes of the graph of $y = \frac{x^2 - 5x - 4}{x^2 - 5x + 4}$.

Working:

- 5. An integer is chosen at random from the first one thousand positive integers. Find the probability that the integer chosen is
 - (a) a multiple of 4;
 - (b) a multiple of **both** 4 and 6.

Working:	
	Answers:
	(a)
	(b)

6. Find $\sum_{r=1}^{50} \ln(2^r)$, giving the answer in the form $a \ln 2$, where $a \in \mathbb{Q}$.

Working:	
	Answer:
	71115 WCF .

- 7. The functions f(x) and g(x) are given by $f(x) = \sqrt{x-2}$ and $g(x) = x^2 + x$. The function $(f \circ g)(x)$ is defined for $x \in \mathbb{R}$, **except** for the interval]a, b[.
 - (a) Calculate the value of *a* and of *b*.
 - (b) Find the range of $f \circ g$.

Working:	
	Answers:
	(a)
	(b)

8. Consider the six numbers, 2, 3, 6, 9, *a* and *b*. The mean of the numbers is 6 and the variance is 10. Find the value of *a* and of *b*, if a < b.

Working:	
	Answers

9. Solve the inequality $x^2 - 4 + \frac{3}{x} < 0$.

Working:	
	Answers:

10. Find an equation for the line of intersection of the following two planes.

$$x+2y-3z=2$$
$$2x+3y-5z=3$$

Working:

11. A particle moves in a straight line with velocity, in metres per second, at time *t* seconds, given by

$$v(t) = 6t^2 - 6t, t \ge 0$$

Calculate the total distance travelled by the particle in the first two seconds of motion.

Working: Answer:

12. Triangle ABC has AB = 8 cm, BC = 6 cm and $BAC = 20^{\circ}$. Find the smallest possible area of ΔABC .

Working:

13. Find $\int (\theta \cos \theta - \theta) d\theta$.

Working:	
	Answar:
	Answer.

14. Find the *x*-coordinate of the point of inflexion on the graph of $y = xe^x$, $-3 \le x \le 1$.

Working:	
	Answer:

15. The probability density function f(x), of a continuous random variable X is defined by

$$f(x) = \begin{cases} \frac{1}{4}x(4-x^2), & 0 \le x \le 2\\ 0, & \text{otherwise.} \end{cases}$$

Calculate the **median** value of *X*.

Working:

Answer:

16. Air is pumped into a spherical ball which expands at a rate of 8 cm^3 per second $(8 \text{ cm}^3 \text{s}^{-1})$. Find the **exact** rate of increase of the radius of the ball when the radius is 2 cm.

Working: Answer: 17. The point B(a, b) is on the curve $f(x) = x^2$ such that B is the point which is closest to A(6, 0). Calculate the value of a.

Working:	
	Answer:

18. Given two non-zero vectors *a* and *b* such that |a+b| = |a-b|, find the value of $a \cdot b$.

Working:	
	Answer:

19. The transformation M represents a reflection in the line $y = x\sqrt{3}$. The transformation R represents a rotation through $\frac{\pi}{6}$ radians anticlockwise about the origin. Give a full geometric description of the single transformation which is equivalent to M followed by R.

Working: Answer:

20. The tangent to the curve y = f(x) at the point P(x, y) meets the x-axis at Q(x-1, 0). The curve meets the y-axis at R(0, 2). Find the equation of the curve.

Working: