MATHEMATICS

HIGHER LEVEL
PAPER 1
Tuesday 7 M ay 2002 (afternoon)

2 hours

IN STRUCTIONS TO CANDIDATES

- Write your name and candidate number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A nswer all the questions in the spaces provided.
- U nless otherwise stated in the question, all numerical answers must be given exactly or to three significant figures.
- Write the make and model of your calculator in the box below e.g. Casio fx-9750G, Sharp EL-9600, Texas Instruments TI-85.

Calculator

M ake	M odel

EXAMINER	TEAM LEADER	IBCA
TOTAL	TOTAL	TOTAL
/120	/120	/120

Maximum marks will be given for correct answers. Where an answer is wrong, some marks may be given for a correct method provided this is shown by written working. Working may be continued below the box, if necessary. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Incorrect answers with no working will normally receive no marks.

1. Consider the arithmetic series $2+5+8+\ldots$.
(a) Find an expression for S_{n}, the sum of the first n terms.
(b) Find the value of n for which $S_{n}=1365$.

Working:

Answers:
(a)
(b)
2. A particle is projected along a straight line path. A fter t seconds, its velocity v metres per second is given by $v=\frac{1}{2+t^{2}}$.
(a) Find the distance travelled in the first second.
(b) Find an expression for the acceleration at time t.

Working:

Answers:
(a)
(b)
3. (a) Express the complex number 8 i in polar form.
(b) The cube root of 8 i which lies in the first quadrant is denoted by z. Express z
(i) in polar form;
(ii) in cartesian form.

Working:

Answers:
(a)
(b) (i) \qquad
(ii) \qquad
4. The matrix \boldsymbol{A} is given by

$$
A=\left(\begin{array}{ccc}
2 & 1 & k \\
1 & k & -1 \\
3 & 4 & 2
\end{array}\right)
$$

Find the values of k for which \boldsymbol{A} is singular.

Working:

Answers:
5. Find the angle between the vectors $\boldsymbol{v}=\boldsymbol{i}+\boldsymbol{j}+2 \boldsymbol{k}$ and $\boldsymbol{w}=2 \boldsymbol{i}+3 \boldsymbol{j}+\boldsymbol{k}$. Give your answer in radians.

Working:

Answer:

6. (a) U se integration by parts to find $\int x^{2} \ln x \mathrm{~d} x$.
(b) Evaluate $\int_{1}^{2} x^{2} \ln x \mathrm{~d} x$.

Working:

Answers:
(a)
(b)
7. The probability that it rains during a summer's day in a certain town is 0.2 . In this town, the probability that the daily maximum temperature exceeds $25^{\circ} \mathrm{C}$ is 0.3 when it rains and 0.6 when it does not rain. Given that the maximum daily temperature exceeded $25^{\circ} \mathrm{C}$ on a particular summer's day, find the probability that it rained on that day.

Working:

Answer:
8. The vector equations of the lines L_{1} and L_{2} are given by

$$
\begin{aligned}
& L_{1}: \boldsymbol{r}=\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k}+\lambda(\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k}) ; \\
& L_{2}: \boldsymbol{r}=\boldsymbol{i}+4 \boldsymbol{j}+5 \boldsymbol{k}+\mu(2 \boldsymbol{i}+\boldsymbol{j}+2 \boldsymbol{k}) .
\end{aligned}
$$

The two lines intersect at the point P. Find the position vector of P.

Working:

Answer:
9. When John throws a stone at a target, the probability that he hits the target is 0.4 . He throws a stone 6 times.
(a) Find the probability that he hits the target exactly 4 times.
(b) Find the probability that he hits the target for the first time on his third throw.

Working:

Answers:
(a)
(b)
10. The angle θ satisfies the equation $\tan \theta+\cot \theta=3$, where θ is in degrees. Find all the possible values of θ lying in the interval $10^{\circ}, 90^{\circ}[$.

Working:

Answers:
11. The weights of a certain species of bird are normally distributed with mean 0.8 kg and standard deviation 0.12 kg . Find the probability that the weight of a randomly chosen bird of the species lies between 0.74 kg and 0.95 kg .

Working:

Answer:
12. The function f is defined on the domain $[0, \pi]$ by $f(\theta)=4 \cos \theta+3 \sin \theta$.
(a) Express $f(\theta)$ in the form $R \cos (\theta-\alpha)$ where $0<\alpha<\frac{\pi}{2}$.
(b) Hence, or otherwise, write down the value of θ for which $f(\theta)$ takes its maximum value.

Working:

Answers:
(a)
(b)
13. The figure below shows part of the curve $y=x^{3}-7 x^{2}+14 x-7$. The curve crosses the x-axis at the points A, B and C.

(a) Find the x-coordinate of A.
(b) Find the x-coordinate of B .
(c) Find the area of the shaded region.

Working:

Answers:
(a)
(b) \qquad
(c) \qquad
14. The 80 applicants for a Sports Science course were required to run 800 metres and their times were recorded. The results were used to produce the following cumulative frequency graph.

Estimate
(a) the median;
(b) the interquartile range.

Working:

Answers:
(a) \qquad
(b) \qquad
15. The one-one function f is defined on the domain $x>0$ by $f(x)=\frac{2 x-1}{x+2}$.
(a) State the range, A, of f.
(b) Obtain an expression for $f^{-1}(x)$, for $x \in A$.

Working:

Answers:
(a)
(b)
16. Find the set of values of x for which $\left(e^{x}-2\right)\left(e^{x}-3\right) " 2 e^{x}$.

Working:

Answer:
17. A curve has equation $x y^{3}+2 x^{2} y=3$. Find the equation of the tangent to this curve at the point $(1,1)$.

Working:

Answer:

18. A transformation \boldsymbol{T} of the plane is represented by the matrix

$$
T=\left(\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right)
$$

(a) \boldsymbol{T} transforms the point P to the point $(8,5)$. Find the coordinates of P .
(b) Find the coordinates of all points which are transformed to themselves under \boldsymbol{T}.

Working:

Answers:
(a)
(b)
19. A rectangle is drawn so that its lower vertices are on the x-axis and its upper vertices are on the curve $y=\mathrm{e}^{-x^{2}}$. The area of this rectangle is denoted by A.
(a) W rite down an expression for A in terms of x.
(b) Find the maximum value of A.

Working:

Answers:
(a)
(b)
20. The diagram below shows the graph of $y_{1}=f(x), 0 " x$ " 4 .

On the axes below, sketch the graph of $y_{2}=\int_{0}^{x} f(t) \mathrm{d} t$, marking clearly the points of inflexion.

