MARKSCHEME

May 2001

MATHEMATICS

Higher Level

Paper 2

1. (a) Using integration by parts

$$
\begin{aligned}
\int x \cos 3 x \mathrm{~d} x & =\frac{1}{3} x \sin 3 x-\frac{1}{3} \int \sin 3 x \mathrm{~d} x \\
& =\frac{1}{3} x \sin 3 x+\frac{1}{9} \cos 3 x+C \quad(C \text { not required })
\end{aligned}
$$

(M1)(A2)
($A G$)
(b) (i) Area $=\left|\left[\frac{1}{3} x \sin 3 x+\frac{1}{9} \cos 3 x\right]_{\frac{\pi}{6}}^{\frac{3 \pi}{6}}\right|=\frac{2 \pi}{9}$
(ii) Area $=\left|\left[\frac{1}{3} x \sin 3 x+\frac{1}{9} \cos 3 x\right]_{\frac{3 \pi}{6}}^{\frac{5 \pi}{6}}\right|=\frac{4 \pi}{9}$
(iii) Area $=\left\langle\left[\frac{1}{3} x \sin 3 x+\frac{1}{9} \cos 3 x\right]_{\frac{5 \pi}{6}}^{\frac{7 \pi}{6}}\right|=\frac{6 \pi}{9}$
(A1)

Note: Accept negative answers for part (b), as long as they are exact. Do not accept answers found using a calculator.
(c) The above areas form an arithmetic sequence with

$$
\begin{align*}
& \qquad \begin{aligned}
u_{1} & =\frac{2 \pi}{9} \text { and } d=\frac{2 \pi}{9} \\
\text { The required area }=S_{n} & =\frac{n}{2}\left[\frac{4 \pi}{9}+\frac{2 \pi}{9}(n-1)\right] \\
& =\frac{n \pi}{9}(n+1)
\end{aligned} \tag{A1}
\end{align*}
$$

(M1)(A1)
2. (a) Given the points $\mathrm{A}(-1,2,3), \mathrm{B}(-1,3,5)$ and $\mathrm{C}(0,-1,1)$,
then $\overrightarrow{\mathrm{AB}}=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right), \overrightarrow{\mathrm{AC}}=\left(\begin{array}{c}1 \\ -3 \\ -2\end{array}\right)$
and $|\overrightarrow{\mathrm{AB}}|=\sqrt{5},|\overrightarrow{\mathrm{AC}}|=\sqrt{14}$
The size of the angle between the vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$ is given by
$\theta=\arccos \left(\frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{AC}}|}\right)=\arccos \left(\frac{-7}{\sqrt{5} \sqrt{14}}\right)$
$\theta=147^{\circ}$ (3 s.f.) or 2.56 radians
(b) Area $=\frac{1}{2}|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{AC}}| \sin \theta$ or $\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|$

Area $=2.29$ units $^{2}\left(\right.$ accept 2.28, 2.30, and $\left.\frac{\sqrt{21}}{2}\right)$
(c) (i) The parametric equations of l_{1} and l_{2} are

$$
\begin{array}{lll}
l_{1}: x=2, & y=-1+\lambda, & z=2 \lambda \\
l_{2}: x=-1+\mu, & y=1-3 \mu, & z=1-2 \mu \tag{A1}
\end{array}
$$

Note: At this stage accept answers with the same parameter for both lines.
(ii) To test for a point of intersection we use the system of equations:

$$
\begin{aligned}
2 & =-1+\mu \\
-1+\lambda & =1-3 \mu \\
2 \lambda & =1-2 \mu
\end{aligned}
$$

(M1)

Then $\mu=3, \lambda=-7$ from (1) and (2)
Substituting into (3) gives RHS $=-14$, LHS $=-5$
Therefore the system of equations has no solution and the lines do not intersect.

Question 2 continued

(d) The shortest distance is given by $\frac{\left|(\boldsymbol{e}-\boldsymbol{d}) \cdot\left(\boldsymbol{l}_{1} \times \boldsymbol{l}_{2}\right)\right|}{\left|\left(\boldsymbol{l}_{1} \times \boldsymbol{l}_{2}\right)\right|}$ where \boldsymbol{d} and \boldsymbol{e} are the position vectors for the points D and E and where \boldsymbol{l}_{1} and \boldsymbol{l}_{2} are the direction vectors for the lines \boldsymbol{l}_{1} and \boldsymbol{l}_{2}.

$$
\begin{align*}
& \text { Then } \boldsymbol{l}_{1} \times \boldsymbol{l}_{2}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
0 & 1 & 2 \\
1 & -3 & -2
\end{array}\right|=4 \boldsymbol{i}+2 \boldsymbol{j}-\boldsymbol{k} \\
& \text { And } \frac{\left|(\boldsymbol{e}-\boldsymbol{d}) \cdot\left(\boldsymbol{l}_{1} \times \boldsymbol{l}_{2}\right)\right|}{\left|\left(\boldsymbol{l}_{1} \times \boldsymbol{l}_{2}\right)\right|}=\frac{|(-3 \boldsymbol{i}+2 \boldsymbol{j}+\boldsymbol{k}) \cdot(4 \boldsymbol{i}+2 \boldsymbol{j}-\boldsymbol{k})|}{\sqrt{21}} \tag{M2}\\
& \qquad=\frac{9}{\sqrt{21}} \text { or } 1.96 \tag{A1}
\end{align*}
$$

(M1)(A1)
3. (a) $f(x)=x\left(\sqrt[3]{\left(x^{2}-1\right)^{2}}\right)$

Notes: Award (A1) for the shape, including the two cusps (sharp points) at $x= \pm 1$.
(i) Award (A1) for the zeros at $x= \pm 1$ and $x=0$.
(ii) Award (A1) for the maximum at $x=-1$ and the minimum at $x=1$.
(iii) Award (A1) for the maximum at approx. $x=0.65$, and the minimum at approx. $x=-0.65$
There are no asymptotes.
The candidates are not required to draw a scale.
(b) (i) Let

Then

$$
\begin{aligned}
& f(x)=x\left(x^{2}-1\right)^{\frac{2}{3}} \\
& f^{\prime}(x)=\frac{4}{3} x^{2}\left(x^{2}-1\right)^{-\frac{1}{3}}+\left(x^{2}-1\right)^{\frac{2}{3}}
\end{aligned}
$$

(M1)(A2)
$f^{\prime}(x)=\left(x^{2}-1\right)^{-\frac{1}{3}}\left[\frac{4}{3} x^{2}+\left(x^{2}-1\right)\right]$
$f^{\prime}(x)=\left(x^{2}-1\right)^{-\frac{1}{3}}\left(\frac{7}{3} x^{2}-1\right)$ (or equivalent) $f^{\prime}(x)=\frac{7 x^{2}-3}{3\left(x^{2}-1\right)^{\frac{1}{3}}}$ (or equivalent)
The domain is

$$
-1.4 \leq x \leq 1.4, x \neq \pm 1(\text { accept }-1.4<x<1.4, x \neq \pm 1)
$$

(ii) For the maximum or minimum points let $f^{\prime}(x)=0$ i.e. $\left(7 x^{2}-3\right)=0$ or use the graph.
Therefore, the x-coordinate of the maximum point is $x=\sqrt{\frac{3}{7}}$ (or 0.655) and the x-coordinate of the minimum point is $x=-\sqrt{\frac{3}{7}}$ (or -0.655).

Notes: Candidates may do this using a GDC, in that case award (M1)(G2).

Question 3 continued

(c) The x-coordinate of the point of inflexion is $x= \pm 1.1339$

OR
$f^{\prime \prime}(x)=\frac{4 x\left(7 x^{2}-9\right)}{9 \sqrt[3]{\left(x^{2}-1\right)^{4}}}, x \neq \pm 1$
For the points of inflexion let $f^{\prime \prime}(x)=0$ and use the graph, i.e. $x=\sqrt{\frac{9}{7}}=1.1339$.

Note: Candidates may do this by plotting $f^{\prime}(x)$ and finding the x-coordinate of the minimum point. There are other possible methods.
4. (i) Let p_{n} be the statement $\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}} \cos x=\cos \left(x+\frac{n \pi}{2}\right)$ for all positive integer values of n. For $n=1, \frac{\mathrm{~d}}{\mathrm{~d} x}(\cos x)=-\sin x$

$$
\begin{equation*}
=\cos \left(x+\frac{\pi}{2}\right) \tag{A1}
\end{equation*}
$$

Therefore p_{1} is true.
Assume the formula is true for $n=k$,
that is, $\frac{\mathrm{d}^{k}}{\mathrm{dx} x^{k}}(\cos x)=\cos \left(x+\frac{k \pi}{2}\right)$
(MI)

Then $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\mathrm{~d}^{k}}{\mathrm{~d} x^{k}}(\cos x)\right)=\frac{\mathrm{d}}{\mathrm{d} x}\left(\cos \left(x+\frac{k \pi}{2}\right)\right)$
$\frac{\mathrm{d}^{k+1}}{\mathrm{~d} x^{k+1}}(\cos x)=-\sin \left(x+\frac{k \pi}{2}\right)$
$\frac{\mathrm{d}^{k+1}}{\mathrm{~d} x^{k+1}}(\cos x)=\cos \left(x+\frac{k \pi}{2}+\frac{\pi}{2}\right)$
$\frac{\mathrm{d}^{k+1}}{\mathrm{~d} x^{k+1}}(\cos x)=\cos \left(x+\frac{(k+1) \pi}{2}\right)$
which is p_{n} when $n=k+1$.
(So if p_{n} is true for $n=k$ then it is true for $n=k+1$ and by the principle of mathematical induction p_{n} is true for all positive integer values of n.)

Question 4 continued
(ii) (a) $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}2 & 2 \\ 10 & 3\end{array}\right)\binom{a}{2 a}=\binom{6 a}{16 a}$ (accept row vectors)

Therefore the image point is $\mathrm{P}^{\prime}(6 a, 16 a)$
(b) From part (a), $y^{\prime}=\frac{8}{3} x^{\prime}$, therefore the equation of the image line is $y=\frac{8}{3} x$.
(c) $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}2 & 2 \\ 10 & 3\end{array}\right)\binom{a}{m a}=\binom{2 a+2 m a}{10 a+3 m a}$
(M1)

Therefore the image point is $\mathrm{Q}^{\prime}(2 a+2 m a, 10 a+3 m a)$
[2 marks]
(d) Since the image line has equation $y=m x$

$$
\begin{align*}
& 10 a+3 m a=2 m a+2 m^{2} a \\
& 2 m^{2}-m-10=0 \\
& (2 m-5)(m+2)=0 \\
& m=\frac{5}{2}, m=-2 \tag{A2}
\end{align*}
$$

[4 marks]
5. (a) $\mathrm{P}(X=3)=\left(\frac{3}{4}\right)^{2} \times \frac{1}{4}=\frac{9}{64}(=0.141$ to 3 s.f. $)$
(M1)(A1)
(b) Let the probability of at least three misses before scoring twice $=\mathrm{P}(3 \mathrm{~m})$ Let S mean "Score" and M mean "Miss".

$$
\begin{align*}
\mathrm{P}(3 \mathrm{~m}) & =1-[\mathrm{P}(0 \text { misses })+\mathrm{P}(1 \text { miss })+\mathrm{P}(2 \text { misses })] \tag{M1}\\
& =1-[\mathrm{P}(\mathrm{SS})+\mathrm{P}(\mathrm{SMS} \text { or MSS })+\mathrm{P}(\mathrm{MMSS} \text { or MSMS or SMMS })] \\
& =1-\left[\left(\frac{1}{4}\right)^{2}+2\left(\frac{1}{4}\right)^{2}\left(\frac{3}{4}\right)+3\left(\frac{1}{4}\right)^{2}\left(\frac{3}{4}\right)^{2}\right] \tag{A2}\\
& =\frac{189}{256}(=0.738 \text { to } 3 \text { s.f. }) \tag{A1}
\end{align*}
$$

(c) $\mathrm{E}(x)=\sum_{\text {for all } \mathrm{x}} x \mathrm{P}(x)=1 \times \frac{1}{4}+2 \times \frac{1}{4} \times \frac{3}{4}+3 \times \frac{1}{4} \times \frac{3}{4}^{2}+\ldots$
(M1)(A1)

$$
\begin{align*}
& =\frac{1}{4}\left(1+2 \times \frac{3}{4}+3 \times \frac{3}{4}^{2}+\ldots\right) \tag{A1}\\
& =\frac{1}{4}\left(1-\frac{3}{4}\right)^{-2} \text { (using the given result) } \\
& =\frac{1}{4}\left(\frac{1}{4}\right)^{-2}=\frac{1}{4}(4)^{2}=4
\end{align*}
$$

(A1)(AG)
6. (i) (a) Let X be the number of patients arriving at the emergency room in a 15 minute period. Rate of arrival in a 15 minute period $=\frac{15}{4}=3.75$.

$$
\begin{aligned}
& \mathrm{P}(X=6)=\frac{(3.75)^{6}}{6!} \mathrm{e}^{-3.75} \\
& \quad=0.0908
\end{aligned}
$$

OR

$\mathrm{P}(6$ patients $)=0.0908$
(b) Let F_{1}, F_{2} be random variables which represent the number of failures to answer telephone calls by the first and the second operator, respectively.

$$
\begin{aligned}
& F_{1} \sim \mathrm{P}_{0}(0.01 \times 20)=\mathrm{P}_{0}(0.2) . \\
& F_{2} \sim \mathrm{P}_{0}(0.03 \times 40)=\mathrm{P}_{0}(1.2) . \\
& \quad \text { Since } F_{1} \text { and } F_{2} \text { are independent } \\
& \quad \begin{aligned}
& F_{1}+F_{2} \sim \mathrm{P}_{0}(0.2+1.2)=\mathrm{P}_{0}(1.4) \\
& \mathrm{P}\left(F_{1}+F_{2} \geq 2\right)=1-\mathrm{P}\left(F_{1}+F_{2}=0\right)-\mathrm{P}\left(F_{1}+F_{2}=1\right) \\
&=1-\mathrm{e}^{-1.4}-(1.4) \mathrm{e}^{-1.4}=0.408
\end{aligned}
\end{aligned}
$$

OR

$$
P\left(F_{1}+F_{2} \geq 2\right)=0.408
$$

(M0)(G2)
(ii) (a) Test statistics: Difference of two sample means t-test is used, as sample sizes are small.
(M1)
Variance: We use pooled variance, s_{n+m-2}^{2} where

$$
\begin{equation*}
s_{n+m-2}^{2}=\frac{n s_{n}^{2}+m s_{m}^{2}}{n+m-2} \tag{A1}
\end{equation*}
$$

Reason: The two sampled populations are normally distributed with equal population variances (and the sample is "small").
(R1)
[3 marks]
(b) $s_{n+m-2}^{2}=\frac{13 \times 1.8^{2}+15 \times 1.6^{2}}{13+15-2}=3.097$
$\mathrm{H}_{0}: \mu_{1}-\mu_{2}=0$
$\mathrm{H}_{1}: \mu_{1}-\mu_{2} \neq 0$
$\begin{aligned} t & =\frac{(6.8-5.3)-0}{\sqrt{(3.097)\left(\frac{1}{13}+\frac{1}{15}\right)}} \\ & =2.25\end{aligned}$
$v=$ the number of degrees of freedom $=13+15-2=26$
At 5\% level of significance, the acceptance and rejection regions are shown: $t_{0.025}$ with 26 degrees of freedom is 2.056

(M1)

Since the computed value of $t=2.25$ falls in the rejection region, we reject H_{0} and conclude that there is a difference between the population means.
(c) 99% confidence interval is $(6.8-5.3) \pm 2.779 \sqrt{3.097\left(\frac{1}{13}+\frac{1}{15}\right)}$
$=(-0.353,3.35)$
(M1)
Since zero lies in the 99% confidence interval we accept the null hypothesis that there is no significant difference.

Question 6 continued

(iii) (a) Test: $\quad \chi^{2}$ test for independence, test statistic: Chisquare statistic
(b) Combining the last two columns, we have the following table of information:

Number of cups	sleep is worse	sleep is the same or better	Total
1	5	10	15
2	10	5	15
3	25	5	30
Total	40	20	60

H_{0} : There is no difference in sleeping pattern.
H_{1} : There is a difference in sleeping pattern.

Table of expected frequencies are:

Number of cups	sleep is worse	sleep is the same or better	Total
1	$\mathbf{1 0}$	$\mathbf{5}$	15
2	$\mathbf{1 0}$	$\mathbf{5}$	15
3	$\mathbf{2 0}$	$\mathbf{1 0}$	30
Total	40	20	60

Note: Award (A2) for 5 or 6 correct bold entries.
Award (A1) for 3 or 4 correct, (A0) for 2 or less.

Number of degrees of freedom $=(2-1)(3-1)=2$.
$\chi_{0.05}^{2}$ with 2 degrees of freedom $=5.99$.
Computed value of Chi-square is given by
$\chi^{2}=\frac{(5-10)^{2}}{10}+\frac{(10-5)^{2}}{5}+\frac{(10-10)^{2}}{10}+\frac{(5-5)^{2}}{5}+\frac{(25-20)^{2}}{20}+\frac{(5-10)^{2}}{10}$

$$
=11.25
$$

Since, 11.25 , the calculated value of $\chi^{2}>5.99$, the critical value, we reject the null hypothesis. Hence there is evidence that drinking coffee has an effect on sleeping pattern.
7. (i) Venn diagrams are

Note: Award (A1) if both the Venn diagrams are correct otherwise award (A0).
From the Venn diagrams, we see that
$B \cap(A-B)=\phi$ and $B \cap(B-A)=B-A$
Hence they are not equal.
Note: Award (M0)(C1) if no reason is given. Accept other correct diagrams.
(ii) A relation R is defined on $\mathbb{Z} \times \mathbb{Z}^{+}$by:

$$
(a, b),(c, d) \in \mathbb{Z} \times \mathbb{Z}^{+},(a, b) R(c, d) \Leftrightarrow a d=b c .
$$

(a) To show that R is an equivalence relation, we show that it is reflexive, symmetric and transitive.

Reflexivity: Since $a b=b a$ for $a, b \in \mathbb{Z}$, we have $(a, b) R(a, b)$.
Symmetry: $(a, b) R(c, d) \Leftrightarrow a d=b c \Leftrightarrow d a=c b \Leftrightarrow c b=d a$

$$
\begin{equation*}
\Leftrightarrow(c, d) R(a, b) \tag{A1}
\end{equation*}
$$

Transitivity: $(a, b) R(c, d)$ and $(c, d) R(e, f) \Rightarrow a d=b c$ and $c f=e d$.
If $c=0, a d=0$ and $e d=0$. Since $d \neq 0, a=0$ and $e=0$.
$\Rightarrow a f=b e \Rightarrow(a, b) R(e, f)$.
If $c \neq 0, a d c f=b c e d$ i.e. $(a f) d c=(b e) c d$ or $(a f) c d=(b e) c d$
i.e. $a f=b e \Rightarrow(a, b) R(e, f)$, since $c d \neq 0$

Note: Award (MO)(R1) if $c d \neq 0$ is not mentioned.
(b) $a d=b c \Leftrightarrow a: b=c: d$
(M1)
i.e. the classes are those pairs (a, b) and (c, d) with $\frac{a}{b}=\frac{c}{d}$
i.e. the elements of those pairs are in the same ratio.
i.e. the elements are on the same line going through the origin.

Question 7 continued

(iii)

(a)

\circ	U	H	V	K
U	U	H	V	K
H	H	U	K	V
V	V	K	U	H
K	K	V	H	U

Note: Award (A4) for 15 or 16 correct entries, (A3) for 13 or $14,(\boldsymbol{A} 2)$ for 11 or 12, (A1) for 9 or $10,(A 0)$ for 8 or fewer.
(b) Closure: U, H, K and V are the only entries in the table. So it is closed.

Identity: U, since $U T=T U=T$ for all T in S.
Inverses: $U^{-1}=U, H^{-1}=H, V^{-1}=V, K^{-1}=K$
Associativity: Given
Hence (S, \circ) forms a group.

Question 7 continued

(c) $C=\{1,-1, \mathrm{i},-\mathrm{i}\}$

\diamond	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

Note: Award (A3) for 15 or 16 correct entries, (A2) for 13 or 14, (A1) for 11 or 12, (A0) for 10 or fewer.
(d) Suppose $f: S \rightarrow C$ is an isomorphism.

Then $f(U)=1$, the identity in C, since f preserves the group operation.
Assume $f(H)=\mathrm{i}, 1=f(U)=f(H \circ H)=f(H) \diamond f(H)$.
But $f(H)=\mathrm{i}$, and i is not its own inverse, so f is not an isomorphism.

Note: Accept other correctly justified solutions.
(iv) Given $(G, *)$ is a cyclic group with identity e and $G \neq\{e\}$ and G has no proper subgroups.
If G is of composite finite order and is cyclic, then there is $x \in G$ such that x generates G.
If $|G|=p \times q, p, q \neq 1$, then $<x^{p}>$ is a subgroup of G of order q which is impossible since G has no non-trivial proper subgroup.
Suppose the order of G is infinite. Then $\left\langle x^{2}\right\rangle$ is a proper subgroup of G which contradicts the fact that G has no proper subgroup.
So G is a finite cyclic group of prime order.
8. (i) Given $a_{n+2}=a_{n+1}+2 a_{n} \quad(n \geq 2), a_{0}=1, a_{1}=5$

The characteristic equation is $r^{2}-r-2=0 \Rightarrow(r-2)(r+1)=0$
Therefore $r=2$ or $r=-1$
The general solution is given by
$a_{n}=A 2^{n}+B(-1)^{n}$
Using $a_{0}=1$ and $a_{1}=5$, we have,
$\left\{\begin{array}{c}A+B=1 \\ 2 A-B=5\end{array}\right.$
Hence, $A=2$ and $B=-1$
Required solution: $a_{n}=2^{n+1}+(-1)^{n+1}$
(ii) By prime factorization of the integers a and b, there are primes $p_{1}, p_{2}, \ldots, p_{n}$ and non-negative integers $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ such that

$$
\begin{align*}
& a=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \ldots \times p_{n}^{a_{n}} \text {, and } b=p_{1}^{b_{1}} \times p_{2}^{b_{2}} \times \ldots \times p_{n}^{b_{n}} \text {. } \tag{M1}\\
& \text { Hence } \operatorname{gcd}(a, b)=p_{1}{ }^{\min \left(a_{1}, b_{1}\right)} \times p_{2}{ }^{\min \left(a_{2}, b_{2}\right)} \times \ldots \times p_{n}{ }^{\min \left(a_{n}, b_{n}\right)} \tag{A1}\\
& \text { and } \operatorname{lcm}(a, b)=p_{1}{ }^{\max \left(a_{1}, b_{1}\right)} \times p_{2}{ }^{\max \left(a_{2}, b_{2}\right)} \times \ldots \times p_{n}{ }^{\max \left(a_{n}, b_{n}\right)} \tag{M1}\\
& \text { Therefore } \operatorname{gcd}(a, b) \times \operatorname{lcm}(a, b)=p_{1}^{\left(a_{1}+b_{1}\right)} \times p_{2}^{\left(a_{2}+b_{2}\right)} \times \ldots \times p_{n}^{\left(a_{n}+b_{n}\right)} \\
& =\left(p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \ldots \times p_{n}^{a_{n}}\right)\left(p_{1}^{b_{1}} \times p_{2}^{b_{2}} \times \ldots \times p_{n}^{b_{n}}\right) \tag{A1}\\
& =a \times b
\end{align*}
$$

($A G$)
(iii) (a) Let f be the number of faces. By Euler's formula $v-e+f=2$.
(M1)
Every edge bounds at most two faces and every face is bounded by at least three edges.
Hence, $e \geq \frac{3}{2} f$ or $3 f \leq 2 e$.
From Euler's formula and $f \leq \frac{2}{3} e$,

$$
\begin{align*}
& 2=v-e+f \leq v-e+\frac{2}{3} e=v-\frac{1}{3} e \tag{M1}\\
& \Rightarrow 2 \leq v-\frac{e}{3} \Rightarrow 6 \leq 3 v-e \Rightarrow e \leq 3 v-6 \tag{A1}
\end{align*}
$$

(b) $\quad \kappa_{5}$ has 5 vertices and 10 edges.
From $e \leq 3 v-6$, we get, $10 \leq 15-6=9$, which is impossible and hence
κ_{5} is not a planar graph.

Question 8 continued

(iv) 5 is the root of the tree.
List
Method
5
9
$9>5$, Root so we go right
8
$8<9$ but still >5, go left
1
$1<5$, so go left from 5

Construction

2
$2>1$ but less than 5 , go right from 1

4
$4>2$ but still <5 and >1, so go right from 2

[^0]
Question 8 continued

(v)

Breadth - first search algorithm from A
Visit all 'depth 1' first, then 'depth 2' etc.
L is a set of vertices, T is a set of edges.
Label
0
1
2
3
$\operatorname{Set} L$
$\{\mathrm{~A}\}$
$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
$\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
$\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}$
$\operatorname{Set} T$
ϕ
$\{a, b\}$
$\{a, b, e, f\}$ or $\{a, b, d, f\}$
$\{a, b, e, f, h\}$ or $\{a, b, e, f, j\}$
or $\{a, b, d, f, h\}$ or $\{a, b, d, f, \mathrm{j}\}$

Spanning trees

Diagram 1

Diagram 3
Diagram 4

Note: Award (A1) for any one correct diagram. Accept other correct solutions with reasoning.
9. (i) (a) Mean Value Theorem: If f is continuous on $[a, b]$ and differentiable on $] a, b[$,
then there exists c in (a, b) such that $f(b)-f(a)=(b-a) f^{\prime}(c)$.

Note: Award (A0) for any error on the assumptions of f.
Award ($\mathbf{A 0}$) if there is any error in the conclusion.
Do not penalise if c in $] a, b$ [or $a<c<b$ is not mentioned.
Accept integral form of the mean value thereon.
(b) Consider $f(u)=u^{k}, u \geq 0,0<k \leq 1$.
(M1)
Take $a=1, b=1+x$.
By mean value theorem there exists ' c ' between a and b so that
$f^{\prime}(c)=\frac{(1+x)^{k}-1^{k}}{1+x-1} \Rightarrow(1+x)^{k}-1=x k c^{k-1}$.
Therefore $(1+x)^{k}=1+k x c^{k-1}$.
(M1)

For $x \geq 0, c$ between 1 and $1+x$ implies $c \geq 1$.
For $0<k \leq 1,-1<k-1 \leq 0$.
Hence, $c^{-1}<c^{k-1} \leq c^{0}$ implies $0<c^{k-1} \leq 1$,
Therefore $k x c^{k-1} \leq k x$
$\Rightarrow 1+k x c^{k-1} \leq 1+k x$
$\Rightarrow(1+x)^{k} \leq 1+k x$
(ii) Error term for Simpson's rule is $-\frac{(b-a) h^{4}}{180} f^{4}(c)$ for some c in $] a, b\left[, h=\frac{b-a}{2 n}\right.$.

For $\int_{2}^{7} \frac{\mathrm{~d} x}{x}$, we have $b-a=5$,
(M1)
$f(x)=x^{-1}, f^{4}(x)=(-1)^{4} \frac{4!}{x^{5}}$
Maximum \mid error $\left\lvert\,=\left(\frac{5}{2 n}\right)^{4}\left(\frac{5}{180}\right) \frac{24}{2^{5}}<5 \times 10^{-5}\left(\right.$ accept $\left.10^{-4}\right)\right.$
(M1)

Therefore $n^{4}>\left(\frac{5}{2}\right)^{4} \times \frac{1}{180} \times \frac{24}{2^{5}} \times 10^{5}=\frac{1250}{768} \times 10^{4} \Rightarrow n>1.13 \times 10=11.3$.
Hence take $n=12$.
Therefore h, the step size, is $\frac{5}{24}=0.208$ (3 s.f.)

Question 9 continued

(iii)

$$
\text { (a) } \begin{array}{rlrl}
f(x) & =\ln (1+x), & f(0)=0 \\
f^{\prime}(x) & =\frac{1}{1+x}, & f^{\prime}(0)=1 \\
f^{\prime \prime}(x) & =-(1+x)^{-2}, & f^{\prime \prime}(0)=-1 \\
f^{\prime \prime \prime}(x) & =(-1)(-2)(1+x)^{-3}, & f^{\prime \prime \prime}(0)=2 \\
f^{(n)}(x) & =(-1)^{n-1}(n-1)!(1+x)^{-n}, \quad f^{(n)}(0)=(-1)^{n-1}(n-1)!
\end{array}
$$

Maclaurin's series for $f(x)=\ln (1+x)$ is
$\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots+(-1)^{n-1} \frac{x^{n}}{n}+\ldots$
$=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$

Note: Award (A0) if the general term $(-1)^{n-1} \frac{x^{n}}{n}$ is not written.
(b) First $(n+1)$ terms give $R_{n}=\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$ for some c such that $0<c<x$.

On substitution $R_{n}=\frac{(-1)^{n} n!x^{n+1}}{(n+1)!(1+c)^{n+1}}=\frac{(-1)^{n} x^{n+1}}{(n+1)(1+c)^{n+1}}$,

$$
\begin{equation*}
\left|R_{n}\right|=\frac{x^{n+1}}{(n+1)(1+c)^{n+1}}<\frac{1}{(n+1)} \text { for } 0 \leq x<1, \tag{M1}
\end{equation*}
$$

since $0<c<x$.

Notes: Award (A0) if the reasons $0<c<x, 0 \leq x<1$ are not written.
Accept an answer using estimation of error in an alternating series.

Question 9 continued

(iv) Note: Do not accept unjustified answers, even if correct.
(a) Compare the series with $\sum_{n=1}^{\infty} \frac{1}{n}$.
$\lim _{n \rightarrow \infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}}=\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
(M1)(A1)

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ is divergent by the comparison test.
(M1)(A1)
[5 marks]
(b) $\quad \cos n \pi=(-1)^{n}$

Hence $u_{n}=\frac{(n+10) \cos n \pi}{n^{1.4}}=(-1)^{n} \frac{(n+10)}{n^{1.4}}=(-1)^{n} v_{n}$
with $v_{n}=\frac{n+10}{n^{1.4}}$
$\Rightarrow \sum_{n=1}^{\infty} u_{n}=\sum_{n=1}^{\infty}(-1)^{n} v_{n}$,
(M1)
$v_{n}=\frac{n+10}{n^{1.4}}$ is a decreasing sequence in n
$\lim _{n \rightarrow \infty} v_{n}=\lim _{n \rightarrow \infty} \frac{n+10}{n^{1.4}}=\lim _{n \rightarrow \infty} \frac{1}{n^{0.4}}=0$,
so the series $\sum_{n=1}^{\infty} \frac{(n+10) \cos n \pi}{n^{1.4}}$ is convergent, by the alternating series test.

Note: There might be inconsistencies in the Markscheme depending on the diagram drawn. Do not penalize candidates for incorrect or non-use of brackets.
10. (i) (a) Given a triangle ABC . Let $[\mathrm{AD}],[\mathrm{BE}],[\mathrm{CF}]$ be such that D lies on $[\mathrm{BC}], \mathrm{E}$ lies on [CA] and F lies on [AB].

Ceva's theorem: If [AD], [BE] and [CF] are concurrent, then
$\frac{\mathrm{AF}}{\mathrm{FB}} \times \frac{\mathrm{BD}}{\mathrm{DC}} \times \frac{\mathrm{CE}}{\mathrm{EA}}=1$
Converse (corollary) of Ceva's theorem:
$\frac{\mathrm{AF}}{\mathrm{FB}} \times \frac{\mathrm{BD}}{\mathrm{DC}} \times \frac{\mathrm{CE}}{\mathrm{EA}}=1$ then $[\mathrm{AD}],[\mathrm{BE}]$ and $[\mathrm{CF}]$ are concurrent.
(b)

Let (AD), (BE) and (CF) be the altitudes of $\triangle \mathrm{ABC}$.
$\triangle \mathrm{ADB}$ and $\triangle \mathrm{CFB}$ are similar, since ABC is common and the triangles are
right angled triangles. So $\frac{B F}{D B}=\frac{C F}{A D}$
(M1)
Similarly, from right triangles AEB and AFC,

$$
\begin{equation*}
\frac{\mathrm{AE}}{\mathrm{FA}}=\frac{\mathrm{EB}}{\mathrm{CF}} \tag{2}
\end{equation*}
$$

(M1)
Also from right triangles CEB and CDA,

$$
\begin{equation*}
\frac{C D}{E C}=\frac{A D}{E B} \tag{3}
\end{equation*}
$$

From (1), (2), (3),

$$
\begin{align*}
& \frac{\mathrm{BF}}{\mathrm{DB}} \times \frac{\mathrm{AE}}{\mathrm{FA}} \times \frac{\mathrm{CD}}{\mathrm{EC}}=\frac{\mathrm{CF}}{\mathrm{AD}} \times \frac{\mathrm{EB}}{\mathrm{CF}} \times \frac{\mathrm{AD}}{\mathrm{~EB}} \\
& \Rightarrow \frac{\mathrm{AE}}{\mathrm{EC}} \times \frac{\mathrm{CD}}{\mathrm{DB}} \times \frac{\mathrm{BF}}{\mathrm{FA}}=1 \tag{4}
\end{align*}
$$

(M1)

By the converse of Ceva's theorem (AD), (BE) and (CF) are concurrent.

Question 10 continued

(ii) (a)

A, B, C, D divide the line $[A B]$ in harmonic ratio if $\frac{A C}{B C}=\frac{A D}{D B}$.
OR
C and D divide $[\mathrm{AB}]$ internally and externally in the same ratio i.e.

$$
\begin{equation*}
\frac{\mathrm{AC}}{\mathrm{CB}}=-\frac{\mathrm{AD}}{\mathrm{DB}} \tag{A2}
\end{equation*}
$$

(b)

Given $\triangle \mathrm{ABC}$. Let (CX) and (CY) be the internal and external angle bisectors of the angle $A C B$.
(M1)
By the angle bisector theorem $\frac{A X}{X B}=\frac{A C}{C B}$ and $\frac{A Y}{B Y}=\frac{A C}{C B}$
Therefore $\frac{A X}{X B}=-\frac{A Y}{Y B}$
(M1)(M1)
and $\mathrm{A}, \mathrm{X}, \mathrm{B}, \mathrm{Y}$ are in harmonic ratio.

Question 10 continued

(iii)

Ellipse is $9 x^{2}+4 y^{2}=36$.
So A is $(-2,0)$.
Let P be (x, y) and M be (α, β).
Then, $\alpha=\frac{1}{2}(-2+x), \beta=\frac{1}{2}(0+y)$.
(A1)(A1)
Since P is on the ellipse $9 x^{2}+4 y^{2}=36$
$9(2 \alpha+2)^{2}+4(2 \beta)^{2}=36 \Rightarrow 9(\alpha+1)^{2}+4 \beta^{2}=9$
Locus of M is $9(x+1)^{2}+4 y^{2}=9$
It is an ellipse with centre $(-1,0)$ and semiaxes 1 and $\frac{3}{2}$ (or equivalent).

Question 10 continued

(iv)

Note: Please note that O is not the origin. (RS) is not necessarily tangential to the right-hand branch of the hyperbola.
Hyperbola is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. Let P be $\left(x_{1}, y_{1}\right), y, \neq 0$
Tangent to hyperbola at $\left(x_{1}, y_{1}\right)$ is $\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}=1$
Tangent at the vertices are $x= \pm a$.
Hence R and S have coordinates $\left(\pm a,\left(\pm \frac{x_{1}}{a}-1\right) \frac{b^{2}}{y_{1}}\right)$, respectively.
Therefore the midpoint of RS is $\left(0,-\frac{b^{2}}{y_{1}}\right)$.
Take O as the midpoint of RS. Let the foci F_{1} and F_{2} be $(\pm c, 0)$ with $c^{2}=a^{2}+b^{2}$.
We shall show that $\mathrm{OR}=\mathrm{OS}=\mathrm{OF}_{1}=\mathrm{OF}_{2}$ and conclude that $\mathrm{R}, \mathrm{S}, \mathrm{F}_{1}, \mathrm{~F}_{2}$ lie on a circle with centre O and radius OR.
Note that $\mathrm{OF}_{1}^{2}=\mathrm{OF}_{2}^{2}=c^{2}+\frac{b^{4}}{y_{1}{ }^{2}}$
(M1)
Also $\mathrm{OR}^{2}=(a-0)^{2}+\left[\left(\frac{x_{1}}{a}-1\right) \frac{b^{2}}{y_{1}}+\frac{b^{2}}{y_{1}}\right]^{2}$

$$
\begin{equation*}
=a^{2}+\frac{x_{1}^{2} b^{4}}{y_{1}^{2} a^{2}} \tag{2}
\end{equation*}
$$

(M1)
Using $\frac{x_{1}{ }^{2}}{a^{2}}-\frac{y_{1}{ }^{2}}{b^{2}}=1$ in (2), by substituting for $\frac{x_{1}{ }^{2}}{a^{2}}$, we get
$\mathrm{OS}^{2}=\mathrm{OR}^{2}=a^{2}+\left(1+\frac{y_{1}^{2}}{b^{2}}\right) \frac{b^{4}}{y_{1}{ }^{2}}=a^{2}+b^{2}+\frac{b^{4}}{y_{1}{ }^{2}}=c^{2}+\frac{b^{4}}{y_{1}{ }^{2}}$.
and the points $\mathrm{R}, \mathrm{S}, \mathrm{F}_{1}, \mathrm{~F}_{2}$ lie on a circle.
Note: Award (R2) to candidates who worked out the case when P is on $\left(\mathrm{F}_{1} \mathrm{~F}_{2}\right)$ and the circle is a straight line.

[^0]: Note: If candidates explain their working and then draw the final binary tree, award marks accordingly.

