MATHEMATICS	Name
HIGHER LEVEL PAPER 1	
	Number
Thursday 2 November 2000 (afternoon)	

2 hours

INSTRUCTIONS TO CANDIDATES

- Write your name and candidate number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all the questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or to three significant figures, as appropriate.
- Write the make and model of your calculator in the box below *e.g.* Casio fx-7400G, Sharp EL-9400, Texas Instruments TI-80.

Calculator

Make	Model

EXAMINER	TEAM LEADER	IBCA				
TOTAL	TOTAL	TOTAL				
/60	/60	/60				

880–281 15 pages

Maximum marks will be given for correct answers. Where an answer is wrong, some marks may be given for a correct method provided this is shown by written working. Working may be continued below the box, if necessary. Where graphs from a graphic display calculator are being used to find solutions, you should sketch these graphs as part of your answer.

1. Find the values of the real number k for which the determinant of the matrix $\begin{pmatrix} k-4 & 3 \\ -2 & k+1 \end{pmatrix}$ is equal to zero.

Working:		
	Answers:	

2. Given functions $f: x \mapsto x + 1$ and $g: x \mapsto x^3$, find the function $(f \circ g)^{-1}$.

Working:	
	Answer:

3.	For the function $f: x \mapsto x^2 \ln x$, $x > 0$,	find the function	f', the	derivative of f	with respe	ct
	to x .					

Working:	
	Answer:

4. The box-and-whisker plots shown represent the heights of female students and the heights of male students at a certain school.

- (a) What percentage of female students are shorter than any male students?
- (b) What percentage of male students are shorter than some female students?
- (c) From the diagram, estimate the mean height of the male students.

Working:	
	Answers:
	(a)
	(b)
	(c)

5. Calculate the area bounded by the graph of $y = x \sin(x^2)$ and the x-axis, between x = 0 and the smallest positive x-intercept.

6.	Given	that	events	\boldsymbol{A}	and	$\boldsymbol{\mathit{B}}$	are	independent	with	$P(A \cap E)$	(3) = 0.3	and	$P(A \cap$	(B') = 0.3	, find
	$P(A \cup$	<i>B</i>) .													

Working:	
	Answer:

7.	Find the sum	of the	positive	terms of	the	arithmetic	sequence	85,	78,	71,	
----	--------------	--------	----------	----------	-----	------------	----------	-----	-----	-----	--

Working:	
	Answer:

8. For the function $f: x \mapsto \frac{1}{2} \sin 2x + \cos x$, find the possible values of $\sin x$ for which f'(x) = 0.

Answers:

9. (a) Describe the transformation of the plane whose matrix is

$$\boldsymbol{M} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

(b) Find the smallest positive integer n for which $M^n = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Working:		
	Anguanga	
	Answers: (a)	
	(b)	

10. Find the real number k for which 1 + ki, $(i = \sqrt{-1})$, is a zero of the polynomial $z^2 + kz + 5$.

Working:

Answer:

11. Let α be the angle between the vectors \boldsymbol{a} and \boldsymbol{b} , where $\boldsymbol{a} = (\cos \theta)\boldsymbol{i} + (\sin \theta)\boldsymbol{j}$, $\boldsymbol{b} = (\sin \theta)\boldsymbol{i} + (\cos \theta)\boldsymbol{j}$ and $0 < \theta < \frac{\pi}{4}$.

Express α in terms of θ .

Working:

Answer:

12. The coefficient of x in the expansion of $\left(x + \frac{1}{ax^2}\right)^7$ is $\frac{7}{3}$. Find the possible values of a.

Working:

Answers:

13. For what values of m is the line y = mx + 5 a tangent to the parabola $y = 4 - x^2$?

Working:

Answers:

14. The tangent to the curve $y^2 = x^3$ at the point P(1, 1) meets the x-axis at Q and the y-axis at R. Find the ratio PQ: QR.

Working:	
	Answer:

15. The sum of an infinite geometric sequence is $13\frac{1}{2}$, and the sum of the first three terms is 13. Fin the first term.				Find		
V	Vorking:					

Answer:

15.

16. In a triangle ABC, $\widehat{ABC} = 30^{\circ}$, AB = 6 cm and $AC = 3\sqrt{2}$ cm. Find the possible lengths of [BC].

Working:

Answers:

17. Solve the differential equation $xy \frac{dy}{dx} = 1 + y^2$, given that y = 0 when x = 2.

Working:

Answer:

18. If z is a complex number and |z + 16| = 4|z + 1|, find the value of |z|.

Working:	
_	
	Answer:

19. In how many ways can six different coins be divided between two students so that each student receives at least one coin?

Working:	
	Answer:

20. The following graph is that part of the graph of y = f(x) for which $f(x) \ge 0$.

Sketch, on the axes provided below, the graph of $y^2 = f(x)$ for $-2 \le x \le 2$.

