1)

International Baccalaureate ${ }^{\circledR}$ Baccalauréat International Bachillerato Internacional 22127102

FURTHER MATHEMATICS

STANDARD LEVEL

PAPER 2

Monday 7 May 2012 (morning)
2 hours

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the Mathematics HL and Further Mathematics SL information booklet is required for this paper.
- The maximum mark for this examination paper is [120 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Total mark: 23]

Part A [Maximum mark: 11]
The area of an equilateral triangle is $1 \mathrm{~cm}^{2}$. Determine the area of
(a) the circumscribed circle; [8 marks]
(b) the inscribed circle.

Part B [Maximum mark: 12]
The points A, B have coordinates $(1,0),(0,1)$ respectively. The point $\mathrm{P}(x, y)$ moves in such a way that $\mathrm{AP}=k \mathrm{BP}$ where $k \in \mathbb{R}^{+}$.
(a) When $k=1$, show that the locus of P is a straight line.
(b) When $k \neq 1$, the locus of P is a circle.
(i) Find, in terms of k, the coordinates of C , the centre of this circle.
(ii) Find the equation of the locus of C as k varies.
2. [Total mark: 25]

Part A [Maximum mark: 16]
The graph H has the following adjacency matrix.

(a) (i) Show that H is bipartite.
(ii) Draw H as a planar graph.
(b) (i) Explain what feature of H guarantees that it has an Eulerian circuit.
(ii) Write down an Eulerian circuit in H.
(c) (i) Find the number of different walks of length five joining A to B.
(ii) Determine how many of these walks go through vertex F after passing along two edges.
(d) Find the maximum number of extra edges that can be added to H while keeping it simple, planar and bipartite.

Part B [Maximum mark: 9]
(a) Find the smallest positive integer m such that $3^{m} \equiv 1(\bmod 22)$.
(b) Given that $3^{49} \equiv n(\bmod 22)$ where $0 \leq n \leq 21$, find the value of n.
(c) Solve the equation $3^{x} \equiv 5(\bmod 22)$.
3. [Maximum mark: 29]
(a) (i) Show that $\frac{\mathrm{d}}{\mathrm{d} \theta}(\sec \theta \tan \theta+\ln (\sec \theta+\tan \theta))=2 \sec ^{3} \theta$.
(ii) Hence write down $\int \sec ^{3} \theta \mathrm{~d} \theta$.
[5 marks]
(b) Consider the differential equation $\left(1+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+x y=1+x^{2}$ given that $y=1$ when $x=0$.
(i) Use Euler's method with a step length of 0.1 to find an approximate value for y when $x=0.3$.
(ii) Find an integrating factor for determining the exact solution of the differential equation.
(iii) Find the solution of the equation in the form $y=f(x)$.
(iv) To how many significant figures does the approximation found in part (i) agree with the exact value of y when $x=0.3$?
4. [Total mark: 25]

Part A [Maximum mark: 12]
The function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ is defined by $\boldsymbol{X} \mapsto \boldsymbol{A} \boldsymbol{X}$, where $\boldsymbol{X}=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $\boldsymbol{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ where a, b, c, d are all non-zero.
(a) Show that f is a bijection if \boldsymbol{A} is non-singular.
(b) Suppose now that \boldsymbol{A} is singular.
(i) Write down the relationship between a, b, c, d.
(ii) Deduce that the second row of \boldsymbol{A} is a multiple of the first row of \boldsymbol{A}.
(iii) Hence show that f is not a bijection.

(Question 4 continued)

Part B [Maximum mark: 13]
Consider the group $\left\{S,+_{m}\right\}$ where $S=\{0,1,2 \ldots m-1\}, m \in \mathbb{N}, m \geq 3$ and $+_{m}$ denotes addition modulo m.
(a) Show that $\left\{S,+_{m}\right\}$ is cyclic for all m.
(b) Given that m is prime,
(i) explain why all elements except the identity are generators of $\left\{S,+_{m}\right\}$;
(ii) find the inverse of x, where x is any element of $\left\{S,+_{m}\right\}$ apart from the identity;
(iii) determine the number of sets of two distinct elements where each element is the inverse of the other.
(c) Suppose now that $m=a b$ where a, b are unequal prime numbers. Show that $\left\{S,+_{m}\right\}$ has two proper subgroups and identify them.
5. [Maximum mark: 18]
(a) The continuous random variable X takes values only in the interval $[a, b]$ and F denotes its cumulative distribution function. Using integration by parts, show that:

$$
E(X)=b-\int_{a}^{b} F(x) \mathrm{d} x .
$$

(b) The continuous random variable Y has probability density function f given by:

$$
\begin{array}{ll}
f(y)=\cos y, & 0 \leq y \leq \frac{\pi}{2} \\
f(y)=0, & \text { elsewhere }
\end{array}
$$

(i) Obtain an expression for the cumulative distribution function of Y, valid for $0 \leq y \leq \frac{\pi}{2}$. Use the result in (a) to determine $E(Y)$.
(ii) The random variable U is defined by $U=Y^{n}$, where $n \in \mathbb{Z}^{+}$. Obtain an expression for the cumulative distribution function of U valid for $0 \leq u \leq\left(\frac{\pi}{2}\right)^{n}$.
(iii) The medians of U and Y are denoted respectively by m_{u} and m_{y}. Show that $m_{u}=m_{y}^{n}$.

