MARKSCHEME

May 2012

FURTHER MATHEMATICS

Standard Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IB Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to scoris instructions and the document "Mathematics HL: Guidance for e-marking May 2012". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \boldsymbol{0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

Award N marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value $(e . g . \sin \theta=1.5)$, do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an Mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $A 1$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for $\boldsymbol{F T}$.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. Part A

(a) consider the above diagram - [AD] and [BE] are the medians and O is therefore both the incentre and the circumcentre
let $\mathrm{AB}=d$ and let R denote the radius of the circumcircle
then,
$R=\mathrm{AO}=\mathrm{AEsec} 30^{\circ}$
$=\frac{d}{2} \times \frac{2}{\sqrt{3}}=\frac{d}{\sqrt{3}}$
area of circumcircle $=\pi R^{2}=\frac{\pi d^{2}}{3}$
area of triangle $=\frac{1}{2} \mathrm{AB} \cdot \mathrm{AC} \sin \mathrm{BAC}$

$$
\begin{equation*}
=\frac{\sqrt{3} d^{2}}{4} \tag{A1}
\end{equation*}
$$

$\frac{\sqrt{3} d^{2}}{4}=1 \Rightarrow d^{2}=\frac{4}{\sqrt{3}}$
area of circumcircle $=\frac{4 \pi}{3 \sqrt{3}}(2.42)$

A1
[8 marks]

Question 1 continued

(b) let r denote the radius of the incircle then

$$
\begin{align*}
& r=\mathrm{OE}=\mathrm{AE} \tan 30^{\circ} \\
& =\frac{d}{2 \sqrt{3}} \\
& \text { area of incircle }=\pi r^{2}=\frac{\pi d^{2}}{12} \tag{A1}\\
& \qquad=\frac{\pi}{3 \sqrt{3}}(0.605)
\end{align*}
$$

Part B

(a) $\mathrm{AP}^{2}=(x-1)^{2}+y^{2}$ and $\mathrm{BP}^{2}=x^{2}+(y-1)^{2} \quad \boldsymbol{A 1}$
$x^{2}-2 x+1+y^{2}=x^{2}+y^{2}-2 y+1 \quad$ M1
$y=x$ which is the equation of a straight line AI
(b) (i) $x^{2}-2 x+1+y^{2}=k^{2}\left(x^{2}+y^{2}-2 y+1\right)$
$\left(k^{2}-1\right) x^{2}+\left(k^{2}-1\right) y^{2}+2 x-2 k^{2} y+k^{2}-1=0 \quad$ AI
$x^{2}+y^{2}+\frac{2 x}{k^{2}-1}-\frac{2 k^{2} y}{k^{2}-1}+1=0 \quad$ A1
by completing the squares or quoting the standard result, M1 coordinates of C are

$$
\begin{equation*}
\left(-\frac{1}{k^{2}-1}, \frac{k^{2}}{k^{2}-1}\right) \tag{A1}
\end{equation*}
$$

(ii) let (x, y) be the coordinates of C
attempting to find k or k^{2},

$$
\begin{align*}
& k^{2}=1-\frac{1}{x} \tag{A1}\\
& y=\frac{1-\frac{1}{x}}{-\frac{1}{x}} \tag{M1}
\end{align*}
$$

$$
y=1-x
$$

2. Part A

(a) (i) using any method,
find that $\{\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{F}\}$ and $\{\mathrm{B}, \mathrm{E}, \mathrm{G}\}$ are disjoint sets of vertices
so that H is bipartite
(ii)

(b) (i) all vertices are of even degree
(ii) DECBAGFBD

A2
(c) (i)
$\left(\begin{array}{lllllll}0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)^{5}$
number of walks $=36$
(ii) recognition of the need to find walks of length 2 and walks of length 3 (M1) number of walks of length 2 from A to $\mathrm{F}=2$
number of walks of length 3 from F to $\mathrm{B}=6$
required number of walks $=12$
(d) for a simple, bipartite graph to be planar,

$$
e \leq 2 v-4=10
$$

at the moment, $e=8$ which means that we cannot add more than 2 edges
we see that we can add 2 edges, e.g. EA and EF
the maximum number of edges we can add is therefore 2

Question 2 continued

Part B

(a) evaluating successive powers of 3
$3^{1} \equiv 3(\bmod 22), 3^{2} \equiv 9(\bmod 22), 3^{3} \equiv 5(\bmod 22)$
$3^{4} \equiv 15(\bmod 22), 3^{5} \equiv 1(\bmod 22)$ so $m=5$
A1
[2 marks]
(b) since $3^{5} \equiv 1(\bmod 22), 3^{45}=\left(3^{5}\right)^{9} \equiv 1(\bmod 22)$

M1A1
M1A1
[4 marks]
(c) from (a), $x=3$ is a solution
since $3^{5} \equiv 1(\bmod 22)$, the complete solution is $x=3+5 N$ where $N \in \bullet$
A1
(M1) A1
[3 marks]
Total [25 marks]
3. (a) (i) $\frac{\mathrm{d}}{\mathrm{d} \theta}(\sec \theta \tan \theta+\ln (\sec \theta+\tan \theta))$
$=\sec ^{3} \theta+\sec \theta \tan ^{2} \theta+\frac{\sec \theta \tan \theta+\sec ^{2} \theta}{\sec \theta+\tan \theta}$
M1A1A1

Note: Award $\boldsymbol{M 1}$ for a valid attempt to differentiate either term.
$=\sec ^{3} \theta+\sec \theta\left(\sec ^{2} \theta-1\right)+\sec \theta \quad$ A1
$=2 \sec ^{3} \theta \quad A G$
(ii) $\quad \int \sec ^{3} \theta \mathrm{~d} \theta=\frac{1}{2}(\sec \theta \tan +\ln (\sec \theta+\tan \theta))(+\mathrm{C}) \quad$ A1
[5 marks]
(b) (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=1-\frac{x y}{1+x^{2}}$

A1

x	y	$\mathrm{~d} y / \mathrm{d} x$	$0.1 \mathrm{~d} y / \mathrm{d} x$
0	1	1	0.1
0.1	1.1	0.8910891089	0.08910891089
0.2	1.189108911	0.7713252094	0.07713252094
0.3	1.266241432		

M1A1
A1
A1
A1

Note: Accept tabular values correct to 3 significant figures.

$$
y \approx 1.27 \text { when } x=0.3
$$

Question 3 continued

(ii) consider the equation in the form
$\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{x y}{1+x^{2}}=1$
the integrating factor I is given by

$$
\begin{align*}
& I=\exp \int\left(\frac{x}{1+x^{2}}\right) \mathrm{d} x \tag{A1}\\
& =\exp \left(\frac{1}{2} \ln \left(1+x^{2}\right)\right) \\
& =\sqrt{1+x^{2}}
\end{align*}
$$

Note: Accept also the fact that the integrating factor for the original equation is $\frac{1}{\sqrt{1+x^{2}}}$.
(iii) consider the equation in the form
$\sqrt{1+x^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} x}+\frac{x y}{\sqrt{1+x^{2}}}=\sqrt{1+x^{2}}$
integrating,
$y \sqrt{1+x^{2}}=\int \sqrt{1+x^{2}} \mathrm{~d} x$
to integrate the right hand side, put $x=\tan \theta, \mathrm{d} x=\sec ^{2} \theta \mathrm{~d} \theta$

$$
\begin{aligned}
\int \sqrt{1+x^{2}} \mathrm{~d} x & =\int \sqrt{1+\tan ^{2} \theta} \cdot \sec ^{2} \theta \mathrm{~d} \theta \\
& =\int \sec ^{3} \theta \mathrm{~d} \theta \\
& =\frac{1}{2}(\sec \theta \tan \theta+\ln (\sec \theta+\tan \theta)) \\
& =\frac{1}{2}\left(x \sqrt{1+x^{2}}+\ln \left(x+\sqrt{1+x^{2}}\right)\right)
\end{aligned}
$$

the solution to the differential equation is therefore
$y \sqrt{1+x^{2}}=\frac{1}{2}\left(x \sqrt{1+x^{2}}+\ln \left(x+\sqrt{1+x^{2}}\right)\right)+C$
Note: Do not penalize the omission of C at this stage.
$y=1$ when $x=0$ gives $C=1$
the solution is $y=\frac{1}{2 \sqrt{1+x^{2}}}\left(x \sqrt{1+x^{2}}+\ln \left(x+\sqrt{1+x^{2}}\right)\right)+\frac{1}{\sqrt{1+x^{2}}}$
(iv) when $x=0.3, y=1.249 \ldots$
the approximation is only correct to 1 significant figure

4. Part A

(a) recognising that the function needs to be injective and surjective

Note: Award R1 if this is seen anywhere in the solution.
injective:
let $\boldsymbol{U}, \boldsymbol{V} \in{ }^{\circ} \times^{\circ}$ be 2-D column vectors such that $\boldsymbol{A} \boldsymbol{U}=\boldsymbol{A} \boldsymbol{V} \quad \boldsymbol{M 1}$
$\boldsymbol{A}^{-1} \boldsymbol{A} \boldsymbol{U}=\boldsymbol{A}^{-1} \boldsymbol{A} \boldsymbol{V} \quad$ M1
$\boldsymbol{U}=\boldsymbol{V}$
this shows that f is injective
surjective:
let $\boldsymbol{W} \in^{\circ} \times^{\circ}$
then there exists $\boldsymbol{Z}=\boldsymbol{A}^{-1} \boldsymbol{W} \in^{\circ} \times^{\circ}$ such that $\boldsymbol{A} \boldsymbol{Z}=\boldsymbol{W}$
this shows that f is surjective
therefore f is a bijection
AG
(b) (i) the relationship is $a d=b c$

A1
(ii) it follows that $\frac{c}{a}=\frac{d}{b}=\lambda$ so that $(c, d)=\lambda(a, b)$
(iii) EITHER
let $\boldsymbol{W}=\left[\begin{array}{l}p \\ q\end{array}\right]$ be a 2-D vector
then $\boldsymbol{A} \boldsymbol{W}=\left[\begin{array}{ll}a & b \\ \lambda a & \lambda b\end{array}\right]\left[\begin{array}{l}p \\ q\end{array}\right]$

$$
=\left[\begin{array}{c}
a p+b q \\
\lambda(a p+b q)
\end{array}\right]
$$

the image always satisfies $y=\lambda x$ so f is not surjective and therefore not a bijection

OR
consider
$\left[\begin{array}{cc}a & b \\ \lambda a & \lambda b\end{array}\right]\left[\begin{array}{l}b \\ 0\end{array}\right]=\left[\begin{array}{l}a b \\ \lambda a b\end{array}\right]$
$\left[\begin{array}{cc}a & b \\ \lambda a & \lambda b\end{array}\right]\left[\begin{array}{l}0 \\ a\end{array}\right]=\left[\begin{array}{c}a b \\ \lambda a b\end{array}\right]$
A1
this shows that f is not injective and therefore not a bijection

Question 4 continued

Part B

(a) the identity element is 0
consider, for $1 \leq r \leq m$, using 1 as a generator
1 combined with itself r times gives r and as r increases from 1 to m, the group is generated ending with 0 when $r=m$ it is therefore cyclic
(b) (i) by Lagrange the order of each element must be a factor of m and if m is prime, its only factors are 1 and m
since 0 is the only element of order 1 , all other elements are of order m and are therefore generators
(ii) since $x+_{m}(m-x)=0$,
(M1)
the inverse of x is $(m-x)$
(iii) consider

element	inverse
1	$m-1$
2	$m-2$
.	.
.	.
.	.
$\frac{1}{2}(m-1)$	$\frac{1}{2}(m+1)$

M1A1
there are $\frac{1}{2}(m-1)$ inverse pairs
Note: Award $\boldsymbol{M 1}$ for an attempt to list the inverse pairs, $\boldsymbol{A 1}$ for completing it correctly and $\boldsymbol{A 1}$ for the final answer.
(c) since a, b are unequal primes the only factors of m are a and b
there are therefore only subgroups of order a and b

R1
they are
$\{0, a, 2 a, \ldots,(b-1) a\}$
A1
$\{0, b, 2 b, \ldots,(a-1) b\}$
A1
[3 marks]
5. (a) $E(X)=\int_{a}^{b} x f(x) \mathrm{d} x$

M1

$$
=[x F(x)]_{a}^{b}-\int_{a}^{b} F(x) \mathrm{d} x
$$

$$
A 1
$$

$$
=b F(b)-a F(a)-\int_{a}^{b} F(x) \mathrm{d} x \quad \text { A1 }
$$

$=b-\int_{a}^{b} F(x) \mathrm{d} x$ because $F(a)=0$ and $F(b)=1$
(b) (i) let G denote the cumulative distribution function of Y

$$
\begin{array}{rlr}
G(y) & =\int_{0}^{y} \cos t \mathrm{~d} t & \text { M1 } \\
& =[\sin t]_{0}^{y} & \boldsymbol{\text { Al }} \tag{A1}\\
& =\sin y & \boldsymbol{A 1} \\
E(Y) & =\frac{\pi}{2}-\int_{0}^{\frac{\pi}{2}} \sin y \mathrm{~d} y & \boldsymbol{M 1} \\
& =\frac{\pi}{2}+[\cos y]_{0}^{\frac{\pi}{2}} & \boldsymbol{A 1}
\end{array}
$$

(ii) CDF of $U=P(U \leq u)$

$$
=P\left(Y \leq u^{\frac{1}{n}}\right)
$$

$$
A 1
$$

$$
\begin{equation*}
=G\left(u^{\frac{1}{n}}\right) \tag{A1}
\end{equation*}
$$

$=\sin \left(u^{\frac{1}{n}}\right)$
(iii) $\quad m_{y}$ satisfies the equation $\sin m_{y}=\frac{1}{2}$
m_{u} satisfies the equation $\sin \left(m_{u}^{\frac{1}{n}}\right)=\frac{1}{2}$
therefore $m_{y}=m_{u}^{\frac{1}{n}}$
$m_{u}=m_{y}^{n}$
$A G$
[14 marks]

