22117102

FURTHER MATHEMATICS

STANDARD LEVEL

PAPER 2

Friday 6 May 2011 (morning)
2 hours

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 12]

A canal system divides a city into six land masses connected by fifteen bridges, as shown in the diagram below.

(a) Draw a planar graph to represent this map.
(b) Write down the adjacency matrix of the graph.
(c) List the degrees of each of the vertices.
(d) State with reasons whether or not this graph has
(i) an Eulerian circuit;
(ii) an Eulerian trail.
(e) Find the number of walks of length 4 from E to F.
2. [Maximum mark: 18]
(a) (i) Two non-intersecting circles, centres C_{1}, C_{2} having radii r_{1}, r_{2} respectively, where $r_{1}>r_{2}$, are shown below.

The point P has the same power with respect to each of the two circles.
The perpendicular from P to $\left[C_{1} C_{2}\right.$] intersects $\left[C_{1} C_{2}\right.$] at Q .
Show that $C_{1} \mathrm{Q}-C_{2} \mathrm{Q}=\frac{r_{1}^{2}-r_{2}^{2}}{C_{1} C_{2}}$.
(ii) Given that circle with centre C_{1} has equation $x^{2}+y^{2}+2 x-10 y+17=0$ and that circle with centre C_{2} has equation $x^{2}+y^{2}-10 x+6 y+30=0$, show that $\frac{C_{1} \mathrm{Q}}{C_{2} \mathrm{Q}}=\frac{21}{19}$.
(b) ABCD is a quadrilateral. (AD) and (BC) intersect at F and (AB) and (CD) intersect at H . (DB) and (CA) intersect (FH) at G and E respectively. This is shown in the diagram below.

Prove that $\frac{\mathrm{HG}}{\mathrm{GF}}=-\frac{\mathrm{HE}}{\mathrm{EF}}$.
3. [Maximum mark: 24]
(a) In an opinion poll of 1400 people, 852 said they preferred Swiss chocolate to any other kind. Calculate a 95% confidence interval for the proportion of people who prefer Swiss chocolate.
(b) An $\alpha \%$ confidence interval based on a sample of size 600 for the proportion of people preferring Swiss cheese to other kinds was calculated to be [0.2511, 0.3155]. Calculate
(i) the number of people in the sample who preferred Swiss cheese;
(ii) the value of α.
(c) Stating null and alternative hypotheses carry out a χ^{2} test at the 5% level to decide if the following data can be modelled by the binomial distribution $B(5,0.35)$.

x	0	1	2	3	4	5
f	15	49	65	36	10	5

[10 marks]
4. [Maximum mark: 14]
(a) Given the linear congruence $a x \equiv b(\bmod p)$, where $a, b \in \mathbb{Z}, p$ is a prime and $\operatorname{gcd}(a, p)=1$, show that $x \equiv a^{p-2} b(\bmod p)$.
[4 marks]
(b) (i) Solve $17 x \equiv 14(\bmod 21)$.
(ii) Use the solution found in part (i) to find the general solution to the Diophantine equation $17 x+21 y=14$.
5. [Maximum mark: 28]
(a) Find the value of $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\cot x\right)$.
(b) Find the interval of convergence of the infinite series

$$
\frac{(x+2)}{3 \times 1}+\frac{(x+2)^{2}}{3^{2} \times 2}+\frac{(x+2)^{3}}{3^{3} \times 3}+\ldots
$$

[10 marks]
(c) (i) Find the Maclaurin series for $\ln (1+\sin x)$ up to and including the term in x^{3}.
(ii) Hence find a series for $\ln (1-\sin x)$ up to and including the term in x^{3}.
(iii) Deduce, by considering the difference of the two series, that

$$
\ln 3 \approx \frac{\pi}{3}\left(1+\frac{\pi^{2}}{216}\right) .
$$

[12 marks]
6. [Maximum mark: 24]
(a) (i) Draw the Cayley table for the set $S=\{0,1,2,3,4,5\}$ under addition modulo six $\left(+_{6}\right)$ and hence show that $\left\{S,+_{6}\right\}$ is a group.
(ii) Show that the group is cyclic and write down its generators.
(iii) Find the subgroup of $\left\{S,+_{6}\right\}$ that contains exactly three elements.
(b) Prove that a cyclic group with exactly one generator cannot have more than two elements.
[4 marks]
(c) $\quad H$ is a group and the function $\Phi: H \rightarrow H$ is defined by $\Phi(a)=a^{-1}$, where a^{-1} is the inverse of a under the group operation. Show that Φ is an isomorphism if and only if H is Abelian.

