

International Baccalaureate[®] Baccalauréat International Bachillerato Internacional

FURTHER MATHEMATICS STANDARD LEVEL PAPER 2

Friday 6 May 2011 (morning)

2 hours

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

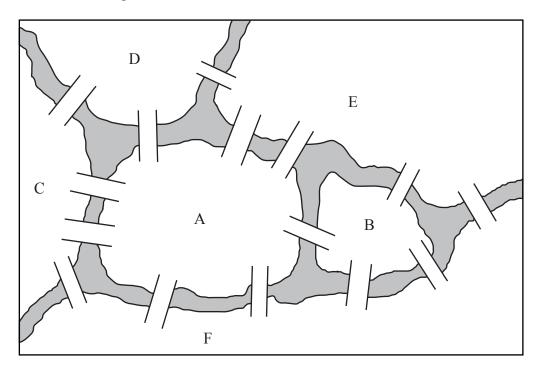
M11/5/FURMA/SP2/ENG/TZ0/XX

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

-2-

1. [Maximum mark: 12]

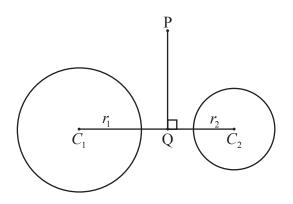
A canal system divides a city into six land masses connected by fifteen bridges, as shown in the diagram below.



(a)	Draw a planar graph to represent this map.	[2 marks]
(b)	Write down the adjacency matrix of the graph.	[2 marks]
(c)	List the degrees of each of the vertices.	[2 marks]
(d)	State with reasons whether or not this graph has	
	(i) an Eulerian circuit;	
	(ii) an Eulerian trail.	[4 marks]
(e)	Find the number of walks of length 4 from E to F.	[2 marks]

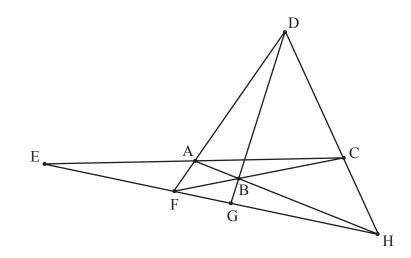
2. [Maximum mark: 18]

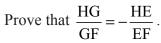
(a) (i) Two non-intersecting circles, centres C_1 , C_2 having radii r_1 , r_2 respectively, where $r_1 > r_2$, are shown below.



The point P has the same power with respect to each of the two circles. The perpendicular from P to $[C_1C_2]$ intersects $[C_1C_2]$ at Q. Show that $C_1Q - C_2Q = \frac{r_1^2 - r_2^2}{C_1C_2}$.

- (ii) Given that circle with centre C_1 has equation $x^2 + y^2 + 2x 10y + 17 = 0$ and that circle with centre C_2 has equation $x^2 + y^2 - 10x + 6y + 30 = 0$, show that $\frac{C_1Q}{C_2Q} = \frac{21}{19}$. [12 marks]
- (b) ABCD is a quadrilateral. (AD) and (BC) intersect at F and (AB) and (CD) intersect at H. (DB) and (CA) intersect (FH) at G and E respectively. This is shown in the diagram below.





[6 marks]

2211-7102

3.

- (a) In an opinion poll of 1400 people, 852 said they preferred Swiss chocolate to any other kind. Calculate a 95 % confidence interval for the proportion of people who prefer Swiss chocolate.
- (b) An α % confidence interval based on a sample of size 600 for the proportion of people preferring Swiss cheese to other kinds was calculated to be [0.2511, 0.3155]. Calculate
 - (i) the number of people in the sample who preferred Swiss cheese;
 - (ii) the value of α .
- (c) Stating null and alternative hypotheses carry out a χ^2 test at the 5 % level to decide if the following data can be modelled by the binomial distribution B(5, 0.35).

x	0	1	2	3	4	5
f	15	49	65	36	10	5

4. [Maximum mark: 14]

- (a) Given the linear congruence $ax \equiv b \pmod{p}$, where $a, b \in \mathbb{Z}$, p is a prime and gcd(a, p)=1, show that $x \equiv a^{p-2}b \pmod{p}$. [4 marks]
- (b) (i) Solve $17x \equiv 14 \pmod{21}$.
 - (ii) Use the solution found in part (i) to find the general solution to the Diophantine equation 17x + 21y = 14. [10 marks]

[9 marks]

[5 marks]

[4 marks]

5. [Maximum mark: 28]

(a) Find the value of
$$\lim_{x \to 0} \left(\frac{1}{x} - \cot x \right)$$
. [6 marks]

(b) Find the interval of convergence of the infinite series

$$\frac{(x+2)}{3} + \frac{(x+2)^2}{3^2} + \frac{(x+2)^3}{3^3} + \dots \qquad [10 \text{ marks}]$$

- (c) (i) Find the Maclaurin series for $\ln(1+\sin x)$ up to and including the term in x^3 .
 - (ii) Hence find a series for $\ln(1-\sin x)$ up to and including the term in x^3 .
 - (iii) Deduce, by considering the difference of the two series, that

$$\ln 3 \approx \frac{\pi}{3} \left(1 + \frac{\pi^2}{216} \right). \qquad [12 marks]$$

6. [Maximum mark: 24]

- (a) (i) Draw the Cayley table for the set $S = \{0, 1, 2, 3, 4, 5\}$ under addition modulo six $(+_6)$ and hence show that $\{S, +_6\}$ is a group.
 - (ii) Show that the group is cyclic and write down its generators.
 - (iii) Find the subgroup of $\{S, +_6\}$ that contains exactly three elements. [11 marks]
- (b) Prove that a cyclic group with exactly one generator cannot have more than two elements.
- (c) *H* is a group and the function $\Phi: H \to H$ is defined by $\Phi(a) = a^{-1}$, where a^{-1} is the inverse of *a* under the group operation. Show that Φ is an isomorphism **if and only if** *H* is Abelian. [9 marks]