MARKSCHEME

May 2011

FURTHER MATHEMATICS

Standard Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IB Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\boldsymbol{R} Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

General

Write the marks in red on candidates' scripts, in the right hand margin.

- Show the breakdown of individual marks awarded using the abbreviations $\boldsymbol{M 1}, \boldsymbol{A 1}$, etc.
- Write down the total for each question (at the end of the question) and circle it.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer, all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ are often dependent on the preceding \boldsymbol{M} mark.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means M1 for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc. do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.
$3 \quad N$ marks
Award \boldsymbol{N} marks for correct answers where there is no working.
- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (e.g. $\sin \theta=1.5)$, do not award the $\operatorname{mark}(\mathrm{s})$ for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then write $-1(\mathbf{M R})$ next to the total. Subtract 1 mark from the total for the question. A candidate should be penalized only once for a particular mis-read.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. The mark should be labelled (d) and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates may not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $A 1$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy.

- Rounding errors: only applies to final answers not to intermediate steps.
- Level of accuracy: when this is not specified in the question the general rule applies: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Candidates should be penalized once only IN THE PAPER for an accuracy error (AP). Award the marks as usual then write ($\boldsymbol{A P}$) against the answer. On the front cover write $-1(\boldsymbol{A P})$. Deduct 1 mark from the total for the paper, not the question.

- If a final correct answer is incorrectly rounded, apply the $\boldsymbol{A P}$.
- If the level of accuracy is not specified in the question, apply the $\boldsymbol{A P}$ for correct answers not given to three significant figures.

If there is no working shown, and answers are given to the correct two significant figures, apply the $\boldsymbol{A P}$. However, do not accept answers to one significant figure without working.

1. (a)

A2
[2 marks]
(b)

$$
\boldsymbol{M}=\begin{gathered}
\mathrm{A} \\
\mathrm{~A}\left(\begin{array}{cccccc}
\mathrm{B} & \mathrm{C} & \mathrm{D} & \mathrm{E} & \mathrm{~F} \\
\mathrm{~B} \\
\mathrm{C} \\
\mathrm{D} \\
\mathrm{D} \\
\mathrm{E} & 1 & 2 & 1 & 2 & 2 \\
\mathrm{~F} & 0 & 0 & 0 & 1 & 2 \\
\mathrm{~F} & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
2 & 1 & 0 & 1 & 0 & 1 \\
2 & 2 & 1 & 0 & 1 & 0
\end{array}\right) .
\end{gathered}
$$

Note: Award $\boldsymbol{A 1}$ for one error or omission, $\boldsymbol{A} \boldsymbol{0}$ for more than one error or omission. Two symetrical errors count as one error.
(c)

A B C D E F
$(8,4,4,3,5,6)$
A2
[2 marks]
Note: Award no more than $\boldsymbol{A 1}$ for one error, $\boldsymbol{A 0}$ for more than one error.
(d) (i) no, because there are odd vertices
(ii) yes, because there are exactly two odd vertices

M1A1
[4 marks]
continued ...

Question 1 continued

(e)

	A	B	C	D	E	F
$M^{4}=$	A 309	174	140	118	170	214
	B 174	117	106	70	122	132
	140	106	117	66	134	138
	D 118	70	66	53	80	102
	E 170	122	134	80	157	170
	F 214	132	138	102	170	213

number of walks of length 4 is 170
Note: The complete matrix need not be shown. Only one of the FE has to be shown.
(M1)A1

Total [12 marks]
2. (a)

(i) $\mathrm{PC} C_{1}^{2}-r_{1}^{2}=\mathrm{P} C_{2}^{2}-r_{2}^{2}$	M1
$\mathrm{P} C_{1}^{2}=\mathrm{PQ}^{2}+C_{1} \mathrm{Q}^{2}$	
$\mathrm{PC}_{2}{ }^{2}=\mathrm{PQ}^{2}+\mathrm{QC}_{2}{ }^{2}$	A1
$\Rightarrow \mathrm{PQ}^{2}+C_{1} \mathrm{Q}^{2}-r_{1}^{2}=\mathrm{PQ}^{2}+\mathrm{QC}_{2}^{2}-r_{2}^{2}$	M1
$\Rightarrow C_{1} \mathrm{Q}^{2}-\mathrm{Q} C_{2}^{2}=r_{1}^{2}-r_{2}^{2}$	
$\Rightarrow\left(C_{1} \mathrm{Q}-\mathrm{Q} C_{2}\right)\left(C_{1} \mathrm{Q}+\mathrm{Q} C_{2}\right)=r_{1}^{2}-r_{2}^{2}$	A1
$\Rightarrow\left(C_{1} \mathrm{Q}-\mathrm{Q} C_{2}\right)\left(C_{1} C_{2}\right)=r_{1}^{2}-r_{2}^{2}$	AI
$\Rightarrow\left(C_{1} \mathrm{Q}-\mathrm{Q} C_{2}\right)=\frac{r_{1}^{2}-r_{2}^{2}}{C_{1} C_{2}}$	$A G$
(ii) centres are $(-1,5)$ and $(5,-3)$	A1
radii are 3 and 2	A1
$C_{1} C_{2}=10$	A1
$C_{1} \mathrm{Q}-\mathrm{Q} C_{2}=\frac{5}{10}$	A1
$C_{1} \mathrm{Q}+\mathrm{QC}_{2}=10$	A1
so $C_{1} \mathrm{Q}=\frac{21}{4}$ and $C_{2} \mathrm{Q}=\frac{19}{4}$	A1A1
$\text { so } \frac{C_{1} \mathrm{Q}}{C_{2} \mathrm{Q}}=\frac{21}{19}$	AG

M1

A1
M1

A1
$\Rightarrow\left(C_{1} \mathrm{Q}-\mathrm{Q} C_{2}\right)\left(C_{1} C_{2}\right)=r_{1}^{2}-r_{2}^{2}$ A1
$\Rightarrow\left(C_{1} \mathrm{Q}-\mathrm{Q} C_{2}\right)=\frac{r_{1}^{2}-r_{2}^{2}}{C_{1} C_{2}}$
radii are 3 and 2
A1
$C_{1} C_{2}=10$ A1
$C_{1} \mathrm{Q}-\mathrm{Q} C_{2}=\frac{5}{10}$ A1
$C_{1} \mathrm{Q}+\mathrm{Q} C_{2}=10$ A1
so $C_{1} \mathrm{Q}=\frac{21}{4}$ and $C_{2} \mathrm{Q}=\frac{19}{4}$
so $\frac{C_{1} \mathrm{Q}}{C_{2} \mathrm{Q}}=\frac{21}{19}$

Question 2 continued

(b)

in $\triangle \mathrm{HFD},[\mathrm{HA}],[\mathrm{FC}]$ and [DG] are concurrent at B
so, $\frac{\mathrm{HG}}{\mathrm{GF}} \times \frac{\mathrm{FA}}{\mathrm{AD}} \times \frac{\mathrm{DC}}{\mathrm{CH}}=1$ by Ceva's theorem A1R1
in $\triangle \mathrm{HFD}$, with CAE as transversal, M1
$\frac{\mathrm{HE}}{\mathrm{EF}} \times \frac{\mathrm{FA}}{\mathrm{AD}} \times \frac{\mathrm{DC}}{\mathrm{CH}}=-1$ by Menelaus' theorem A1R1
therefore, $\frac{\mathrm{HG}}{\mathrm{GF}}=-\frac{\mathrm{HE}}{\mathrm{EF}}$ AG
3. (a) interval is $\frac{852}{1400} \pm 1.96 \sqrt{\frac{\left(\frac{852}{1400}\right)\left(\frac{548}{1400}\right)}{1400}} \quad$ M1A1A1

Note: Award $\boldsymbol{M 1}$ for $\frac{852}{1400} \pm \ldots, \boldsymbol{A 1}$ for 1.96 and $\boldsymbol{A 1}$ for $\sqrt{\frac{\left(\frac{852}{1400}\right)\left(\frac{548}{1400}\right)}{1400}}$
$=[0.583,0.634]$
A1A1

Question 3 continued

(b) (i) using the interval symmetry M1

$$
p=\frac{0.2511+0.3155}{2}=\frac{0.5666}{2}=0.2833
$$

hence
$n=0.2833 \times 600=169.98$

(ii) $1-p=q=0.7167$

$$
\begin{aligned}
& \left(0.2833+z_{\alpha} \times \sqrt{\frac{0.2833 \times 0.7167}{600}}\right)-\left(0.2833+z_{\alpha} \times \sqrt{\frac{0.2833 \times 0.7167}{600}}\right)=0.3155-0.2511 \\
& z_{\alpha}=\frac{0.0322}{\sqrt{\frac{0.2833 \times 0.7167}{600}}}=1.7504 \ldots \approx 1.75 \\
& \alpha=92.0 \% \text { (do not penalize if only the } 92.0 \% \text { is seen) }
\end{aligned}
$$

Note: Award first $\boldsymbol{A 1}$ if 0.04 or 0.96 seen.

Question 3 continued

(c) $\quad H_{0}:$ data can be modelled $\mathrm{B}(5,0.35)$
$H_{1}:$ data cannot be modelled $\mathrm{B}(5,0.35) \quad \boldsymbol{A 1}$

x	0	1	2	3	4	5
f_{o}	15	49	65	36	10	5
f_{e}	20.89	56.23	60.55	32.61	8.78	0.95

M1A2
Note: Award $\boldsymbol{A l}$ for 1 error, and $\boldsymbol{A 0}$ for two or more errors.

x	0	1	2	3	4 or 5
f_{o}	15	49	65	36	15
f_{e}	20.89	56.23	60.55	32.61	9.72

Note: $\boldsymbol{R} \mathbf{1}$ is for combining 2 columns.

EITHER

$$
\chi_{\text {calc }}^{2}=\frac{(15-20.89)^{2}}{20.89}+\frac{(49-56.23)^{2}}{56.23}+\ldots+\frac{(15-9.72)^{2}}{9.72} \approx 6.14
$$

$$
\chi_{5 \%}^{2}(4)=9.488, v=4
$$

OR

by GDC with $v=4, \chi_{G D C}^{2} \approx 6.14, p=0.189$
(M1)A1A1A1

THEN

hence since $\chi_{5 \%}^{2}(4)=9.488>\chi_{G D C}^{2}($ or $p=0.189>0.05)$ then accept H_{0}
4. (a) $a x \equiv b(\bmod p)$
$\Rightarrow a^{p-2} \times a x \equiv a^{p-2} \times b(\bmod p) \quad$ M1A1
$\Rightarrow a^{p-1} x \equiv a^{p-2} \times b(\bmod p) \quad A 1$
but $a^{p-1} \equiv 1(\bmod p)$ by Fermat's little theorem $\boldsymbol{R 1}$
$\Rightarrow x \equiv a^{p-2} \times b(\bmod p) \quad \boldsymbol{A G}$
Note: Award $\boldsymbol{M 1}$ for some correct method and $\boldsymbol{A 1}$ for correct statement.
[4 marks]
(b) (i) $17 x \equiv 14(\bmod 21)$
$\Rightarrow x \equiv 17^{19} \times 14(\bmod 21) \quad$ M1A1
$17^{6} \equiv 1(\bmod 21) \quad$ A1
$\Rightarrow x \equiv(1)^{3} \times 17 \times 14(\bmod 21) \quad$ A1
$\Rightarrow x \equiv 7(\bmod 21) \quad$ A1
(ii) $x \equiv 7(\bmod 21)$
$\Rightarrow x=7+21 t, t \in \mathbb{Z} \quad$ M1A1
$\Rightarrow 17(7+21 t)+21 y=14 \quad$ AI
$\Rightarrow 119+357 t+21 y=14$
$\Rightarrow 21 y=-105-357 t \quad$ A1
$\Rightarrow y=-5-17 t \quad$ A1
[10 marks]
Total [14 marks]
5. (a) EITHER
$\lim _{x \rightarrow 0}\left(\frac{1}{x}-\cot x\right)$
$=\lim _{x \rightarrow 0}\left(\frac{\tan x-x}{x \tan x}\right)$
$=\lim _{x \rightarrow 0}\left(\frac{\sec ^{2} x-1}{x \sec ^{2} x+\tan x}\right)$, using l'Hopital
$=\lim _{x \rightarrow 0}\left(\frac{2 \sec ^{2} x \tan x}{2 \sec ^{2} x+2 x \sec ^{2} x \tan x}\right)$
A1A1
$=0$
OR
$\lim _{x \rightarrow 0}\left(\frac{1}{x}-\cot x\right)$
$=\lim _{x \rightarrow 0}\left(\frac{\sin x-x \cos x}{x \sin x}\right)$
M1A1
$=\lim _{x \rightarrow 0}\left(\frac{x \sin x}{\sin x+x \cos x}\right)$, using 1'Hopital A1
$=\lim _{x \rightarrow 0}\left(\frac{\sin x+x \cos x}{2 \cos x-x \sin x}\right)$
$=0$
(b) $\quad u_{n}=\frac{(x+2)^{n}}{3^{n} \times n}$
$\frac{u_{n+1}}{u_{n}}=\frac{\frac{(x+2)^{n+1}}{3^{n+1} \times(n+1)}}{\frac{(x+2)^{n}}{3^{n} \times n}}=\frac{(x+2) n}{3(n+1)}$
M1A1
$\lim _{n \rightarrow \infty} \frac{(x+2) n}{3(n+1)}=\frac{(x+2)}{3}$
$\left|\frac{(x+2)}{3}\right|<1 \Rightarrow-5<x<1$
if $x=1$ series is $1+\frac{1}{2}+\frac{1}{3}+\ldots$ which diverges
if $x=-5$ series is $-1+\frac{1}{2}-\frac{1}{3}+\ldots+\frac{(-1)^{n}}{n}$ which converges A1
hence interval is $-5 \leq x<1$

Question 5 continued

(c)

$$
\begin{aligned}
& \text { (i) } \quad f(x)=\ln (1+\sin x), f(0)=0 \quad \boldsymbol{A 1} \\
& f^{\prime}(x)=\frac{\cos x}{1+\sin x}, f^{\prime}(0)=1, \\
& \text { A1 } \\
& f^{\prime \prime}(x)=\frac{-\sin x(1+\sin x)-\cos ^{2} x}{(1+\sin x)^{2}}=\frac{-(1+\sin x)}{(1+\sin x)^{2}}=\frac{-1}{1+\sin x}, f^{\prime \prime}(0)=-1 \quad \text { A1 } \\
& f^{\prime \prime \prime}(x)=\frac{\cos x}{(1+\sin x)^{2}}, f^{\prime \prime \prime}(0)=1, \\
& \ln (1+\sin x) \approx x-\frac{x^{2}}{2}+\frac{x^{3}}{6}-\ldots \\
& \text { (ii) }-\sin x=\sin (-x) \quad \text { M1 } \\
& \text { so, } \ln (1-\sin x) \approx-x-\frac{x^{2}}{2}-\frac{x^{3}}{6}-\ldots \\
& \text { (iii) } \ln (1+\sin x)-\ln (1-\sin x) \\
& =\ln \left(\frac{1+\sin x}{1-\sin x}\right) \approx 2 x+\frac{x^{3}}{3} \\
& \text { let } x=\frac{\pi}{6} \text { then, } \ln \left(\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right)=\ln 3 \approx 2\left(\frac{\pi}{6}\right)+\frac{\left(\frac{\pi}{6}\right)^{3}}{3} \\
& =\frac{\pi}{3}\left(1+\frac{\pi^{2}}{216}\right)
\end{aligned}
$$

6. (a) (i)

$+{ }_{6}$	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

the table is closed.
the identity is 0 A1
0 is in every row and column once so each element has a unique inverse $\boldsymbol{A 1}$
addition is associative A1
therefore $\left\{S,+_{6}\right\}$ is a group $\boldsymbol{R} \mathbf{1}$
(ii) $\begin{array}{ll}1+1+1+1+1+1=0 \\ 1 & +1+1+1+1=5 \\ 1+1+1+1=4 \\ 1+1+1=3 \\ 1 & +1=2\end{array} \quad$ M1
so 1 is a generator of $\left\{\mathrm{S},+_{6}\right\}$ and the group is cyclic $\boldsymbol{A 1}$
(since 5 is the additive inverse of 1) 5 is also a generator $\boldsymbol{A 1}$
(iii) $\{0,2,4\} \quad$ A1
[11 marks]
(b) if a is a generator of group $(G, *)$ then so is $a^{-1} \quad A 1$
if $(G, *)$ has exactly one generator a then $a=a^{-1} \quad$ A1
so $a^{2}=e$ and $G=\{e, a\}\{e\} \quad$ A1R1
so cyclic group with exactly one generator cannot have more than two elements $\boldsymbol{A} \boldsymbol{G}$
[4 marks]
(c) every element of a group has a unique inverse so Φ is a bijection A1
$\Phi(a b)=(a b)^{-1}=b^{-1} a^{-1}$
M1A1
if H is Abelian then it follows that
$b^{-1} a^{-1}=a^{-1} b^{-1}=\Phi(a) \Phi(b)$
A1
so Φ is an isomorphism $\quad \boldsymbol{R} \mathbf{1}$
if Φ is an isomorphism, then M1
for all $a, b \in H, \Phi(a b)=\Phi(a) \Phi(b) \quad$ M1
$(a b)^{-1}=a^{-1} b^{-1}$
$\Rightarrow b^{-1} a^{-1}=a^{-1} b^{-1}$
A1
so H is Abelian

