22117101

FURTHER MATHEMATICS

STANDARD LEVEL

PAPER 1

Thursday 5 May 2011 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 11]
(a) Bottles of iced tea are supposed to contain 500 ml . A random sample of 8 bottles was selected and the volumes measured (in ml) were as follows:

$$
497.2,502.0,501.0,498.6,496.3,499.1,500.1,497.7
$$

(i) Calculate unbiased estimates of the mean and variance.
(ii) Test at the 5% significance level the null hypothesis $\mathrm{H}_{0}: \mu=500$ against the alternative hypothesis $\mathrm{H}_{1}: \mu<500$.
(b) A random sample of size four is taken from the distribution $\mathrm{N}(60,36)$. Calculate the probability that the sum of the sample values is less than 250 .
2. [Maximum mark: 15]
(a) (i) Find the range of values of n for which $\int_{1}^{\infty} x^{n} \mathrm{~d} x$ exists.
(ii) Write down the value of $\int_{1}^{\infty} x^{n} \mathrm{~d} x$ in terms of n, when it does exist. [7 marks]
(b) Find the solution to the differential equation

$$
(\cos x-\sin x) \frac{\mathrm{d} y}{\mathrm{~d} x}+(\cos x+\sin x) y=\cos x+\sin x
$$

given that $y=-1$ when $x=\frac{\pi}{2}$.
3. [Maximum mark: 11]
(a) Prove that the number 14641 is the fourth power of an integer in any base greater than 6.
(b) For $a, b \in \mathbb{Z}$ the relation $a R b$ is defined if and only if $\frac{a}{b}=2^{k}, k \in \mathbb{Z}$.
(i) Prove that R is an equivalence relation.
(ii) List the equivalence classes of R on the set $\{1,2,3,4,5,6,7,8,9,10\}$. [8 marks]
4. [Maximum mark: 11]
(a) Prove that if $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$, then $\operatorname{gcd}(a, b c)=1$.
(b) (i) A simple graph has e edges and v vertices, where $v>2$. Prove that if all the vertices have degree at least k, then $2 e \geq k v$.
(ii) Hence prove that every planar graph has at least one vertex of degree less than 6.
[6 marks]
5. [Maximum mark: 12]

The rectangle $A B C D$ is inscribed in a circle. Sides [AD] and $[\mathrm{AB}]$ have lengths 3 cm and 9 cm respectively. E is a point on side $[\mathrm{AB}]$ such that AE is 3 cm . Side [DE] is produced to meet the circumcircle of ABCD at point P . Use Ptolemy's theorem to calculate the length of chord [AP].

