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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to 
find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks 
may be given for a correct method, provided this is shown by written working.  All students should therefore 
be advised to show their working.

1. [Maximum mark:  32]

The binary operator *  is defined for a b, ∈  by a b a b ab* = + − .

 (a) (i) Show that *  is associative.

  (ii) Find the identity element.

  (iii) Find the inverse of a ∈ , showing that the inverse exists for all values 
of  a  except one value which should be identified.

  (iv) Solve the equation x x* =1. [15 marks]

 (b) The domain of *  is now reduced to S = { , , , , ,0 2 3 4 5 6} and the arithmetic is 
carried out modulo 7.

  (i) Copy and complete the following Cayley table for { , *}S .

* 0 2 3 4 5 6
0 0 2 3 4 5 6
2 2 0 6 5 4 3
3 3
4 4
5 5
6 6

  (ii) Show that { , *}S  is a group.

  (iii) Determine the order of each element in S and state, with a reason,  
whether or not { , *}S  is cyclic.

  (iv) Determine all the proper subgroups of { , *}S  and explain how your results 
illustrate Lagrange’s theorem.

  (v) Solve the equation 2 5* *x x = . [17 marks]



M10/5/FURMA/SP2/ENG/TZ0/XX

2210-7102

– 3 –

Turn over 

2. [Total mark:  16]

Part A [Maximum mark:  9]

The points D, E, F lie on the sides [BC], [CA], [AB] of the triangle ABC and [AD], 
[BE], [CF] intersect at the point G.  You are given that CD BD= 2  and AG GD= 2 .

 (a) By considering (BE) as a transversal to the triangle ACD, show that

CE
EA

= 3
2

. [2 marks]

 (b) Determine the ratios

  (i) AF
FB

;

  (ii) BG
GE

. [7 marks]

Part B [Maximum mark:  7]

P
A B

C

DE

F

 The diagram shows a hexagon ABCDEF inscribed in a circle.  All the sides of the 
hexagon are equal in length.  The point P lies on the minor arc AB of the circle.   
Using Ptolemy’s theorem, show that

PE PD PA PB PC PF+ = + + + .
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3. [Maximum mark:  18]

The following diagram shows a weighted graph  G .

A

B C

DEF

4

8

5

92

7

5
4

3

 (a) (i) Explain briefly what features of the graph enable you to state that  G  has 
an Eulerian trail but does not have an Eulerian circuit.

  (ii) Write down an Eulerian trail in  G . [3 marks]

 (b) (i) Use Kruskal’s algorithm to find and draw the minimum spanning tree for  G .  
Your solution should indicate the order in which the edges are added.

  (ii) State the weight of the minimum spanning tree. [5 marks]

 (c) Use Dijkstra’s algorithm to find the path of minimum total weight joining  
A to D, and state its weight.  Your solution should indicate clearly the use of  
this algorithm. [10 marks]



M10/5/FURMA/SP2/ENG/TZ0/XX

2210-7102

– 5 –

Turn over 

4. [Maximum mark:  13]

 (a) The weights,  X  grams, of tomatoes may be assumed to be normally distributed 
with mean µ  grams and standard deviation σ  grams.  Barry weighs 21 tomatoes 
selected at random and calculates the following statistics.

x x= =∑∑ 1071 547052;

  (i) Determine unbiased estimates of µ  and σ 2 .

  (ii) Determine a 95 % confidence interval for µ . [8 marks]

 (b) The random variable  Y  has variance σ 2 , where σ 2 0> .  A random sample 
of  n  observations of  Y  is taken and Sn−1

2  denotes the unbiased estimator for σ 2 .   
By considering the expression

Var E E( ) ( ) ( )S S Sn n n− − −= −{ }1 1
2

1
2 ,

show that Sn−1  is not an unbiased estimator for σ . [5 marks]

5. [Maximum mark:  19]

After a shop opens at 09:00 the number of customers arriving in any interval of 

duration  t  minutes follows a Poisson distribution with mean t
10

.

 (a) (i) Find the probability that exactly five customers arrive before 10:00 .

  (ii) Given that exactly five customers arrive before 10:00 , find the probability 
that exactly two customers arrive before 09:30 . [7 marks]

 (b) Let the second customer arrive at  T  minutes after 09:00 .

  (i) Show that, for t > 0 ,

P e( )T t t t

> = +





−
1

10
10 .

  (ii) Hence find in simplified form the probability density function of  T .

  (iii) Evaluate E ( )T .
(You may assume that, for n∈ +

  and a > 0 , lim
t

n att
→∞

− =e 0 .) [12 marks]
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6. [Maximum mark:  22]

 (a) The diagram shows a sketch of the graph of y x= −4  for x > 0 .

y

x

  By considering this sketch, show that, for n∈ +
 ,

1 1
4

1
4 4r
x

x rr n
n

r n= +

∞ ∞

=

∞

∑ ∫ ∑< <d . [5 marks]

 (b) Let S
rr

=
=

∞

∑ 1
4

1

.

Use the result in (a) to show that, for n ≥ 2 , the value of  S  lies between

1 1
34

1

1

3r nr

n

=

−

∑ +  and 1 1
34

1
3r nr

n

=
∑ + . [8 marks]

 (c) (i) Show that, by taking n = 8 , the value of  S  can be deduced correct to three 
decimal places and state this value.

  (ii) The exact value of  S  is known to be π4

N
 where N ∈ +

 .  Determine the 
value of  N . [6 marks]

 (d) Now let T
r

r

r
= − +

=

∞

∑ ( )1 1

4
1

.

Find the value of  T  correct to three decimal places. [3 marks]

n n +1 n + 2 n + 3


