

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

FURTHER MATHEMATICS STANDARD LEVEL PAPER 2

Thursday 17 May 2007 (morning)

2 hours

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. All students should therefore be advised to show their working.

1. [Maximum mark: 24]

(a)

The diagram above shows the graph G.

- (i) Explain briefly why G has no Eulerian circuit.
- (ii) Determine whether or not G is bipartite.
- (iii) Write down the adjacency matrix of *G*. Hence find the number of walks of length 4 beginning at A and ending at C. [12 marks]
- (b) The cost adjacency matrix of a graph with vertices P, Q, R, S, T, U is given by

	Р	Q	R	S	Т	U
Р	_	8	—	_	_	4
Q	8	_	7	_	2	3
R	-	7	—	6	3	_
S	-	_	6	_	9	_
Т	_	2	3	9	_	7
U	4	3	_	_	7	_

Use Dijkstra's Algorithm to find the length of the shortest path between the vertices P and S. Show all the steps used by the algorithm and list the order of the vertices in the path.

[12 marks]

2. [Maximum mark: 27]

(a) The random variable X is thought to follow a binomial distribution B(4, p). In order to investigate this belief, a random sample of 100 observations on X was taken with the following results.

Value of <i>x</i>	Frequency
0	17
1	32
2	19
3	18
4	14

- (i) State suitable hypotheses for testing this belief.
- (ii) Calculate the mean of these data and hence estimate the value of *p*.
- (iii) Calculate an appropriate value of χ^2 and state your conclusion, using a 1 % significance level. [19 marks]
- (b) An automatic machine is used to fill bottles of water. The amount delivered, Y ml, may be assumed to be normally distributed with mean μ ml and standard deviation 8 ml. Initially, the machine is adjusted so that the value of μ is 500. In order to check that the value of μ remains equal to 500, a random sample of 10 bottles is selected at regular intervals, and the mean amount of water, \overline{y} , in these bottles is calculated. The following hypotheses are set up.

$$H_0: \mu = 500; H_1: \mu \neq 500$$

The critical region is defined to be $(\overline{y} < 495) \cup (\overline{y} > 505)$.

- (i) Find the significance level of this procedure.
- (ii) Some time later, the actual value of μ is 503. Find the probability of a Type II error.

[8 marks]

3. [Maximum mark: 21]

(a)	The diagram shows triangle ABC together with its inscribed circle. Show that [AD], [BE] and [CF] are concurrent.	[8 marks]
(b)	PQRS is a parallelogram and T is a point inside the parallelogram such that the sum of $P\hat{T}Q$ and $R\hat{T}S$ is 180°. Show that $PT \times TR + ST \times TQ = PQ \times QR$.	[13 marks]

4. [Maximum mark: 22]

- (a) The function f is defined by $f(x) = \frac{e^x + e^{-x}}{2}$.
 - (i) Obtain an expression for $f^{(n)}(x)$, the *n*th derivative of f(x) with respect to x.
 - (ii) Hence derive the Maclaurin series for f(x) up to and including the term in x^4 .

(iii) Use your result to find a rational approximation to $f\left(\frac{1}{2}\right)$.

(iv) Use the Lagrange error term to determine an upper bound to the error in this approximation. [13 marks]

(b) Use the integral test to determine whether the series $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$ is convergent or divergent. [9 marks]

5. [Maximum mark: 26]

- (a) The relation R is defined for $x, y \in \mathbb{Z}^+$ such that xRy if and only if $3^x \equiv 3^y \pmod{10}$.
 - (i) Show that R is an equivalence relation.
 - (ii) Identify all the equivalence classes.
- (b) Let S denote the set $\left\{ x \mid x = a + b\sqrt{3}, a, b \in \mathbb{Q}, a^2 + b^2 \neq 0 \right\}$.
 - (i) Prove that *S* is a group under multiplication.
 - (ii) Give a reason why S would not be a group if the conditions on a, b were changed to $a, b \in \mathbb{R}$, $a^2 + b^2 \neq 0$. [15 marks]

[11 marks]