FURTHER MATHEMATICS
STANDARD LEVEL
PAPER 2

Thursday 17 May 2007 (morning)
2 hours

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. All students should therefore be advised to show their working.

1. [Maximum mark: 24]
(a)

The diagram above shows the graph G.
(i) Explain briefly why G has no Eulerian circuit.
(ii) Determine whether or not G is bipartite.
(iii) Write down the adjacency matrix of G. Hence find the number of walks of length 4 beginning at A and ending at C .
(b) The cost adjacency matrix of a graph with vertices P, Q, R, S, T, U is given by

	P	Q	R	S	T	U
P	-	8	-	-	-	4
Q	8	-	7	-	2	3
R	-	7	-	6	3	-
S	-	-	6	-	9	-
T	-	2	3	9	-	7
U	4	3	-	-	7	-

Use Dijkstra's Algorithm to find the length of the shortest path between the vertices P and S . Show all the steps used by the algorithm and list the order of the vertices in the path.
2. [Maximum mark: 27]
(a) The random variable X is thought to follow a binomial distribution $\mathrm{B}(4, p)$. In order to investigate this belief, a random sample of 100 observations on X was taken with the following results.

Value of x	Frequency
0	17
1	32
2	19
3	18
4	14

(i) State suitable hypotheses for testing this belief.
(ii) Calculate the mean of these data and hence estimate the value of p.
(iii) Calculate an appropriate value of χ^{2} and state your conclusion, using a 1% significance level.
(b) An automatic machine is used to fill bottles of water. The amount delivered, $Y \mathrm{ml}$, may be assumed to be normally distributed with mean $\mu \mathrm{ml}$ and standard deviation 8 ml . Initially, the machine is adjusted so that the value of μ is 500 . In order to check that the value of μ remains equal to 500 , a random sample of 10 bottles is selected at regular intervals, and the mean amount of water, \bar{y}, in these bottles is calculated. The following hypotheses are set up.

$$
\mathrm{H}_{0}: \mu=500 ; \mathrm{H}_{1}: \mu \neq 500
$$

The critical region is defined to be $(\bar{y}<495) \cup(\bar{y}>505)$.
(i) Find the significance level of this procedure.
(ii) Some time later, the actual value of μ is 503 . Find the probability of a Type II error.
3. [Maximum mark: 21]

(a) The diagram shows triangle ABC together with its inscribed circle. Show that [AD], $[\mathrm{BE}]$ and $[\mathrm{CF}]$ are concurrent.
(b) PQRS is a parallelogram and T is a point inside the parallelogram such that the sum of $\mathrm{P} \hat{\mathrm{T} Q}$ and $\mathrm{R} \hat{T} S$ is 180°. Show that $\mathrm{PT} \times \mathrm{TR}+\mathrm{ST} \times \mathrm{TQ}=\mathrm{PQ} \times \mathrm{QR}$.
4. [Maximum mark: 22]
(a) The function f is defined by $f(x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}$.
(i) Obtain an expression for $f^{(n)}(x)$, the nth derivative of $f(x)$ with respect to x.
(ii) Hence derive the Maclaurin series for $f(x)$ up to and including the term in x^{4}.
(iii) Use your result to find a rational approximation to $f\left(\frac{1}{2}\right)$.
(iv) Use the Lagrange error term to determine an upper bound to the error in this approximation.
(b) Use the integral test to determine whether the series $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$ is convergent or divergent.
5. [Maximum mark: 26]
(a) The relation R is defined for $x, y \in \mathbb{Z}^{+}$such that $x R y$ if and only if $3^{x} \equiv 3^{y}(\bmod 10)$.
(i) Show that R is an equivalence relation.
(ii) Identify all the equivalence classes.
(b) Let S denote the set $\left\{x \mid x=a+b \sqrt{3}, a, b \in \mathbb{Q}, a^{2}+b^{2} \neq 0\right\}$.
(i) Prove that S is a group under multiplication.
(ii) Give a reason why S would not be a group if the conditions on a, b were changed to $a, b \in \mathbb{R}, a^{2}+b^{2} \neq 0$.

