FURTHER MATHEMATICS
STANDARD LEVEL
PAPER 1

Wednesday 16 May 2007 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. All students should therefore be advised to show their working.

1. [Maximum mark: 8]

The point $\mathrm{P}(x, y)$ moves in such a way that its distance from the point $(1,0)$ is three times its distance from the point $(-1,0)$.
(a) Find the equation of the locus of P .
(b) Show that this equation represents a circle and state its radius and the coordinates of its centre.
2. [Maximum mark: 8]

Calculate the following limits
(a) $\lim _{x \rightarrow 0} \frac{2^{x}-1}{x}$;
[3 marks]
(b) $\lim _{x \rightarrow 0} \frac{\left(1+x^{2}\right)^{\frac{3}{2}}-1}{\ln (1+x)-x}$.
3. [Maximum mark: 12]
(a) Show that the set S of numbers of the form $2^{m} \times 3^{n}$, where $m, n \in \mathbb{Z}$, forms a group $\{S, \times\}$ under multiplication.
(b) Show that $\{S, \times\}$ is isomorphic to the group of complex numbers $m+n \mathrm{i}$ under addition, where $m, n \in \mathbb{Z}$.
4. [Maximum mark: 12]
(a) Use the Euclidean Algorithm to show that 275 and 378 are relatively prime.
(b) Find the general solution to the diophantine equation $275 x+378 y=1$.
5. [Maximum mark: 9]

Solve the differential equation $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=\sqrt{1+x^{2}}$ given that $y=1$ when $x=\sqrt{3}$.
[9 marks]
6. [Maximum mark: 11]

The weights, $X \mathrm{~kg}$, of male birds of a certain species are normally distributed with mean 4.5 kg and standard deviation 0.2 kg . The weights, $Y \mathrm{~kg}$, of female birds of this species are normally distributed with mean 2.5 kg and standard deviation 0.15 kg .
(a) (i) Find the mean and variance of $2 Y-X$.
(ii) Find the probability that the weight of a randomly chosen male bird is more than twice the weight of a randomly chosen female bird.
[6 marks]
(b) Two randomly chosen male birds and three randomly chosen female birds are placed together on a weighing machine for which the recommended maximum weight is 16 kg . Find the probability that this maximum weight is exceeded.

