

MARKSCHEME

May 2001

FURTHER MATHEMATICS

Standard Level

Paper 1

(b) H_0 : coin is fair.

 H_1 : coin is not fair.

Assuming H_0 , the expected numbers of heads and tails are 100 each.

$$\chi^{2} = \frac{\left\{ \left| 108 - 100 \right| - 0.5 \right\}^{2}}{100} + \frac{\left\{ \left| 92 - 100 \right| - 0.5 \right\}^{2}}{100} = 1.125$$
 (M1)(A1)

For $v = 1, \chi^2$ value at 1% level of significance is 6.635. (A1)

Since 6.635 > 1.125, we cannot reject the null hypothesis that the coin is fair. (R1)

[5 marks]

2. Given (G, \circ) is a group. Let x, y be any two elements of G. Since $x \circ x = e, x^{-1} = x$ for all $x \in G$ (C1) Hence $(x \circ y)^{-1} = x \circ y$. Also $(x \circ y)^{-1} = y^{-1} \circ x^{-1}$ (M1) So $y^{-1} \circ x^{-1} = x \circ y$ (M1) Also $y^{-1} \circ x^{-1} = y \circ x$ (A1) So $x \circ y = y \circ x$ for all $x, y \in G$, and the group is Abelian. (R1)

[5 marks]

3. Let P_k be the profit in thousands of dollars at the end of the kth year. Then

 $P_{1} = 30, P_{2} = 68, P_{3} = 144$ $P_{n+1} = 2P_{n} + 8$ (M1)(A1)
Hence $P_{n+1} = 2(2P_{n-1} + 8) + 8$ (M1)

$$= 2^{2}(P_{n-1}) + 8(2+1)$$

$$= 2^{3}(P_{n-2}) + 8(2^{2}+2+1) = \dots$$

$$= 2^{n}P_{1} + 8\frac{2^{n-1}}{2-1} = 2^{n}P_{1} + 2^{n} - 8 - 8$$

$$P_{n+1} = 2^{n}(P_{1}+8) - 8$$

$$P_{n} = 38000 \times 2^{n-1} - 8000$$
(A1)

[5 marks]

4. We need to find a bijective function from \mathbb{R} to \mathbb{R}^+ that preserves the operation, for example, let $f: \mathbb{R} \to \mathbb{R}^+$ be such that $f(x) = e^x$. (M1) $e^x = e^y$ implies x = y and hence f is an injection. (M1) For any $c \in \mathbb{R}^+$, there exists $d \in \mathbb{R}$ such that $d = \ln c$ so that $f(d) = e^d = c$. So f is a surjection, and hence f is a bijection from \mathbb{R} onto \mathbb{R}^+ (M1) Since, $f(x+y) = e^{x+y} = e^x \times e^y = f(x) \times f(y)$ (A1) f is an isomorphism. (R1) – 8 –

5.

S is the centre of the circle.

$$C\hat{D}T = \frac{1}{2}C\hat{S}T$$
(M1)

$$O\hat{T}C = \frac{1}{2}C\hat{S}T$$
(M1)

$$\Rightarrow O\hat{T}C = C\hat{D}T$$

$$T\hat{O}C = T\hat{O}D$$
(A1)

Therefore $\triangle OTC$ is similar to $\triangle ODT$

$$\frac{OT}{OC} = \frac{OD}{OT}$$
(A1)

$$\Rightarrow OT^2 = OD \times OC \tag{AG}$$

(M1)

6. (a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)^7} = \sum_{n=0}^{\infty} (-1)^n a_n$$
$$a_n = \frac{1}{(n+1)^7} \Longrightarrow a_n \ge a_{n+1}, n = 0, 1, ...,$$
(C1)

Also
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{(n+1)^7} = 0.$$
 (M1)

(b) For six decimal place accuracy, error *E* satisfies |E| < | first truncated term |

Therefore
$$\frac{1}{(n+1)^7} < 0.0000005$$

Therefore $n+1 > 7.9 \Rightarrow n > 6.9$, so $n = 7$ (smallest integer value) (A1)
Sum of the series correct to six decimal places is
 $1 - \frac{1}{2^7} + \frac{1}{3^7} - \ldots + \frac{1}{7^7} = 0.992594$ (6 d.p.) (R1)
OR

Since
$$8^{-7} = 0.000\,000\,476837$$
, (M1)

The sum of the series correct to six decimal places is

$$1 - \frac{1}{2^7} + \frac{1}{3^7} - \frac{1}{4^7} + \frac{1}{5^7} - \frac{1}{6^7} + \frac{1}{7^7} = 0.992594$$
 (A1)

OR

Sum = 0.992594

(G2) [5 marks] 7. $f(x) = e^{-x^2}$

 $\int_{0}^{5} e^{-x^{2}} dx$ may be approximated to 2 d.p. provided *n* satisfies

$$\max_{0 < c < 5} \left| f''(c) \right| \left(\frac{5 - 0}{12} \right) \left(\frac{5}{n} \right)^2 \le 5 \times 10^{-3}$$
(M1)

$$\max |f''(c)| = 2$$

$$\Rightarrow 2 \times \frac{5}{12} \times \frac{25}{n^2} \le 5 \times 10^{-3}$$
(M1)

$$\Rightarrow n^{2} \ge \frac{12 \times n}{12 \times 5}$$
$$\Rightarrow n^{2} \ge \frac{25 \times 10^{3}}{6}$$

$$\Rightarrow n \ge 64.5 \tag{M1}$$

thus $n = 65$ (A1)

8. If y = mx + c is a tangent to the ellipse, then (x, mx + c) will lie on the ellipse.

Hence
$$\frac{x^2}{a^2} + \frac{(mx+c)^2}{b^2} = 1$$
 (M1)

or $x^2(b^2 + a^2m^2) + 2mxca^2 + (c^2 - b^2)a^2 = 0$ (1) (A1)

If y = mx + c is a tangent, then the equation (1) should have a double root and hence the discriminant should be zero.

Therefore y = mx + c is a tangent to the ellipse if and only if (1) has two equal roots; (M1) if $4m^2c^2a^4 = 4(b^2 + a^2m^2)(c^2 - b^2)a^2$ (A1)

$$4m \ c \ a = 4(b + a \ m)(c - b) a \tag{A1}$$

$$=4b^{2}(c^{2}-b^{2})a^{2}+4a^{4}m^{2}(c^{2}-b^{2})$$

It is true if (and only if) $c^2 - b^2 = a^2 m^2$ $\Rightarrow c^2 = a^2 m^2$

$$\Rightarrow c^2 = a^2 m^2 + b^2 \tag{AG}$$

[5 marks]

(R1)

– 10 –

9.

- (a) Statistic: t statistic since sample sizes are small.
 Variance: Pooled variance since population variances are equal. (A1)
- (b) $H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$ Let \overline{x}_1 and \overline{x}_2 be the sample means for mines 1 and 2, respectively.

$$\bar{x}_1 = 8230, \bar{x}_2 = 7940$$
 (G1)

$$t = - (8230 - 7940)$$

$$\sqrt{\frac{(5 \times 112.25^2 + 6 \times 95.39^2)}{(5 + 6 - 2)}} \left(\frac{1}{5} + \frac{1}{6}\right) \tag{M1}$$

$$=4.19$$
 (A1)

OR

2 sample <i>t</i> -test, $t = 4.19$, $p = 0.0023$, 9 degrees of freedom.	(G2)
$t_{.025}$ with $11-2=9$ degrees of freedom = 2.262.	

Since calculated t value $4.19 > t_{.025} = 2.262$, we reject the null hypothesis. (R1)

[5 marks]

10. If G has a spanning tree each vertex must be in that tree and hence G is connected.
Conversely, if G is connected then using the breadth first search spanning tree algorithm to
G, we get a set L of vertices and a set T of edges connecting vertices in L.
Since T is a tree and G is connected each vertex of G is labelled.
Thus L contains all the vertices of G and T is a spanning tree for the graph G.(M1)(R1)(M1)
(M1)
(M1)(M1)
(M1)

Note: For the converse, some candidates may argue differently. Award marks as follows: Award (M1)(A1) for G is simple and connected then a tree can be created by taking one vertex and extending one edge and one vertex at a time to include all vertices without a cycle.
Award (R1) for a tree is created which contains all the vertices, so we have a tree which spans G.

[5 marks]