MARKSCHEME

May 2001

FURTHER MATHEMATICS

Standard Level

Paper 1

1. (a) When performing a χ^{2} test where v, the number of degrees of freedom is 1 , the continuity correction is used to compensate for the fact that the χ^{2} distribution is continuous, whereas cell entries are discrete.
(b) $\quad \mathrm{H}_{0}:$ coin is fair.
H_{1} : coin is not fair.
Assuming H_{0}, the expected numbers of heads and tails are 100 each.
$\chi^{2}=\frac{\{|108-100|-0.5\}^{2}}{100}+\frac{\{|92-100|-0.5\}^{2}}{100}=1.125$
(M1)(A1)
For $v=1, \chi^{2}$ value at 1% level of significance is 6.635 .
Since $6.635>1.125$, we cannot reject the null hypothesis that the coin is fair.
2. Given (G, \circ) is a group. Let x, y be any two elements of G.

Since $x \circ x=e, x^{-1}=x$ for all $x \in G$
Hence $(x \circ y)^{-1}=x \circ y$. Also $(x \circ y)^{-1}=y^{-1} \circ x^{-1}$ (M1)
So $y^{-1} \circ x^{-1}=x \circ y$ (M1)
Also $y^{-1} \circ x^{-1}=y \circ x$
So $x \circ y=y \circ x$ for all $x, y \in G$, and the group is Abelian.
3. Let P_{k} be the profit in thousands of dollars at the end of the k th year. Then

$$
P_{1}=30, P_{2}=68, P_{3}=144
$$

$$
\begin{equation*}
P_{n+1}=2 P_{n}+8 \tag{M1}
\end{equation*}
$$

Hence $P_{n+1}=2\left(2 P_{n-1}+8\right)+8$
4. We need to find a bijective function from \mathbb{R} to \mathbb{R}^{+}that preserves the operation, for example, let
$f: \mathbb{R} \rightarrow \mathbb{R}^{+}$be such that $f(x)=e^{x}$.
$e^{x}=e^{y}$ implies $x=y$ and hence f is an injection.
For any $c \in \mathbb{R}^{+}$, there exists $d \in \mathbb{R}$ such that $d=\ln c$ so that $f(d)=e^{d}=c$. So f is a surjection, and hence f is a bijection from \mathbb{R} onto \mathbb{R}^{+}
Since, $f(x+y)=e^{x+y}=e^{x} \times e^{y}=f(x) \times f(y)$
f is an isomorphism.
5.

S is the centre of the circle.

$$
\begin{aligned}
\mathrm{C} \hat{\mathrm{DT}} & =\frac{1}{2} \mathrm{C} \hat{\mathrm{~S}} \mathrm{~T} \\
\mathrm{O} \hat{\mathrm{~T}} \mathrm{C} & =\frac{1}{2} \mathrm{C} \hat{\mathrm{~S}} \mathrm{~T} \\
\Rightarrow \mathrm{O} \hat{\mathrm{~T}} \mathrm{C} & =\mathrm{C} \hat{\mathrm{D} T} \\
\mathrm{~T} \hat{\mathrm{O}} & =\mathrm{T} \hat{\mathrm{D}}
\end{aligned}
$$

Therefore $\Delta \mathrm{OTC}$ is similar to $\Delta \mathrm{ODT}$

$$
\begin{aligned}
\frac{\mathrm{OT}}{\mathrm{OC}} & =\frac{\mathrm{OD}}{\mathrm{OT}} \\
\Rightarrow \mathrm{OT}^{2} & =\mathrm{OD} \times \mathrm{OC}
\end{aligned}
$$

6. (a) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+1)^{7}}=\sum_{n=0}^{\infty}(-1)^{n} a_{n}$
$a_{n}=\frac{1}{(n+1)^{7}} \Rightarrow a_{n} \geq a_{n+1}, n=0,1, \ldots$,
Also $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{(n+1)^{7}}=0$.
Hence the series converges by the alternating series test.
(b) For six decimal place accuracy, error E satisfies $|E|<\mid$ first truncated term \mid

Therefore $\frac{1}{(n+1)^{7}}<0.0000005$
Therefore $n+1>7.9 \Rightarrow n>6.9$, so $n=7$ (smallest integer value)
Sum of the series correct to six decimal places is
$1-\frac{1}{2^{7}}+\frac{1}{3^{7}}-\ldots+\frac{1}{7^{7}}=0.992594$ (6 d.p.)
OR
Since $8^{-7}=0.000000476837$,
The sum of the series correct to six decimal places is
$1-\frac{1}{2^{7}}+\frac{1}{3^{7}}-\frac{1}{4^{7}}+\frac{1}{5^{7}}-\frac{1}{6^{7}}+\frac{1}{7^{7}}=0.992594$
OR
Sum $=0.992594$
7. $f(x)=\mathrm{e}^{-x^{2}}$
$\int_{0}^{5} \mathrm{e}^{-x^{2}} \mathrm{~d} x$ may be approximated to 2 d.p. provided n satisfies
$\max _{0<c<5} \left\lvert\, f^{\prime \prime}(c)\left(\frac{5-0}{12}\right)\left(\frac{5}{n}\right)^{2} \leq 5 \times 10^{-3}\right.$
$\max \left|f^{\prime \prime}(c)\right|=2$
$\Rightarrow 2 \times \frac{5}{12} \times \frac{25}{n^{2}} \leq 5 \times 10^{-3}$
$\Rightarrow n^{2} \geq \frac{10 \times 25 \times 10^{3}}{12 \times 5}$
$\Rightarrow n^{2} \geq \frac{25 \times 10^{3}}{6}$
$\Rightarrow n \geq 64.5$
thus $n=65$
8. If $y=m x+c$ is a tangent to the ellipse, then $(x, m x+c)$ will lie on the ellipse.

Hence $\frac{x^{2}}{a^{2}}+\frac{(m x+c)^{2}}{b^{2}}=1$
or $x^{2}\left(b^{2}+a^{2} m^{2}\right)+2 m x c a^{2}+\left(c^{2}-b^{2}\right) a^{2}=0$
If $y=m x+c$ is a tangent, then the equation (1) should have a double root and hence the discriminant should be zero.
Therefore $y=m x+c$ is a tangent to the ellipse if and only if (1) has two equal roots;
if $4 m^{2} c^{2} a^{4}=4\left(b^{2}+a^{2} m^{2}\right)\left(c^{2}-b^{2}\right) a^{2}$

$$
\begin{equation*}
=4 b^{2}\left(c^{2}-b^{2}\right) a^{2}+4 a^{4} m^{2}\left(c^{2}-b^{2}\right) \tag{A1}
\end{equation*}
$$

It is true if (and only if) $c^{2}-b^{2}=a^{2} m^{2}$

$$
\begin{equation*}
\Rightarrow c^{2}=a^{2} m^{2}+b^{2} \tag{AG}
\end{equation*}
$$

9. (a) Statistic: t statistic since sample sizes are small.

Variance: Pooled variance since population variances are equal.
(b) $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$
$\mathrm{H}_{1}: \mu_{1} \neq \mu_{2}$
Let \bar{x}_{1} and \bar{x}_{2} be the sample means for mines 1 and 2, respectively.
$\bar{x}_{1}=8230, \bar{x}_{2}=7940$

$$
\begin{aligned}
t & =\frac{(8230-7940)}{\sqrt{\frac{\left(5 \times 112.25^{2}+6 \times 95.39^{2}\right)}{(5+6-2)}\left(\frac{1}{5}+\frac{1}{6}\right)}} \\
& =4.19
\end{aligned}
$$

OR

2 sample t-test, $t=4.19, p=0.0023,9$ degrees of freedom.
$t_{.025}$ with $11-2=9$ degrees of freedom $=2.262$.
Since calculated t value $4.19>t_{.025}=2.262$, we reject the null hypothesis.
10. If G has a spanning tree each vertex must be in that tree and hence G is connected.

Conversely, if G is connected then using the breadth first search spanning tree algorithm to G, we get a set L of vertices and a set T of edges connecting vertices in L.
Since T is a tree and G is connected each vertex of G is labelled.
Thus L contains all the vertices of G and T is a spanning tree for the graph G.

Note: For the converse, some candidates may argue differently. Award marks as follows: Award (M1)(A1) for G is simple and connected then a tree can be created by taking one vertex and extending one edge and one vertex at a time to include all vertices without a cycle.
Award (R1) for a tree is created which contains all the vertices, so we have a tree which spans G.

