Further mathematics

Higher level

Paper 2

Thursday 11 May 2017 (morning)

2 hours 30 minutes

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [150 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular,
solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 11]

The diagram shows the graph G with the weights of the edges marked.
(a) (i) State what features of the graph enable you to state that G contains an Eulerian trail but no Eulerian circuit.
(ii) Write down an Eulerian trail.
(b) Use Dijkstra's algorithm to find the path of minimum total weight joining A to D, stating this total weight. Your solution should show clearly that this algorithm has been used.
2. [Maximum mark: 15]
(a) The group $\{G, *\}$ has a subgroup $\{H, *\}$. The relation R is defined such that for $x, y \in G, x R y$ if and only if $x^{-1} * y \in H$. Show that R is an equivalence relation.
(b) Consider the special case in which $G=\{1,3,4,9,10,12\}, H=\{1,12\}$ and * denotes multiplication modulo 13.
(i) Show that $3 R 10$.
(ii) Determine the three equivalence classes.
3. [Maximum mark: 15]
(a) The sequence $\left\{u_{n}\right\}$ satisfies the second-degree recurrence relation

$$
u_{n+2}=u_{n+1}+6 u_{n}, n \in \mathbb{Z}^{+} .
$$

(i) Write down the auxiliary equation.
(ii) Given that $u_{1}=12, u_{2}=6$, show that

$$
u_{n}=2 \times 3^{n}-3 \times(-2)^{n} .
$$

(iii) Determine the value of $\lim _{n \rightarrow \infty} \frac{u_{n}+u_{n-1}}{u_{n}-u_{n-1}}$.
(b) Another sequence $\left\{v_{n}\right\}$ is such that

$$
v_{n}=u_{2 n}, n \in \mathbb{Z}^{+} .
$$

Determine the second-degree recurrence relation satisfied by $\left\{v_{n}\right\}$.
4. [Maximum mark: 19]
(a) Consider the matrix

$$
\boldsymbol{A}=\left[\begin{array}{lll}
\lambda & 3 & 2 \\
2 & 4 & \lambda \\
3 & 7 & 3
\end{array}\right]
$$

(i) Find an expression for $\operatorname{det}(\boldsymbol{A})$ in terms of λ, simplifying your answer.
(ii) Hence show that \boldsymbol{A} is singular when $\lambda=1$ and find the other value of λ for which \boldsymbol{A} is singular.

Suppose now that $\lambda=1$ so consider the matrix

$$
\boldsymbol{B}=\left[\begin{array}{lll}
1 & 3 & 2 \\
2 & 4 & 1 \\
3 & 7 & 3
\end{array}\right] .
$$

(b) (i) Explain how it can be seen immediately that \boldsymbol{B} is singular without calculating its determinant.
(ii) Determine the null space of \boldsymbol{B}.
(iii) Explain briefly how your results verify the rank-nullity theorem.
(c) Prove, using mathematical induction, that

$$
\begin{equation*}
\boldsymbol{B}^{n}=8^{n-2} \boldsymbol{B}^{2} \text { for } n \in \mathbb{Z}^{+}, n \geq 3 . \tag{7}
\end{equation*}
$$

5. [Maximum mark: 24]
(a) (i) By considering integration as the reverse of differentiation, show that for

$$
\begin{aligned}
& 0 \leq x<\frac{\pi}{2} \\
& \quad \int \sec x \mathrm{~d} x=\ln (\sec x+\tan x)+C .
\end{aligned}
$$

(ii) Hence, using integration by parts, show that

$$
\begin{equation*}
\int \sec ^{3} x \mathrm{~d} x=\frac{1}{2}(\sec x \tan x+\ln (\sec x+\tan x))+C . \tag{8}
\end{equation*}
$$

(b) Consider the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+y \tan x=2 \sec ^{2} x, 0 \leq x<\frac{\pi}{2}, \text { given that } y=1 \text { when } x=0 .
$$

(i) Find an integrating factor and hence solve the differential equation, giving your answer in the form $y=f(x)$.
(ii) Starting with the differential equation, show that

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+y=2 \sec ^{2} x \tan x .
$$

(iii) Hence, by using your calculator to draw two appropriate graphs or otherwise, find the x-coordinate of the point of inflection on the graph of $y=f(x)$.
6. [Maximum mark: 14]
(a)

Figure 1

Figure 1 shows a tangent [PQ] at the point Q of a circle and a line [PS] meeting the circle at the points R, S and passing through the centre O of the circle.
(i) Show that $\mathrm{PQ}^{2}=\mathrm{PR} \times \mathrm{PS}$.
(ii) State briefly how this result can be generalized to give the tangent-secant theorem.
(b)

Figure 2

Figure 2 shows a triangle ABC inscribed in a circle. The tangents at the points A, B, C meet the opposite sides of the triangle externally at the points $\mathrm{D}, \mathrm{E}, \mathrm{F}$ respectively.

(Question 6 continued)

(i) Show that $\frac{\mathrm{AD}^{2}}{\mathrm{BD}^{2}}=\frac{\mathrm{CD}}{\mathrm{BD}}$.
(ii) By considering a pair of similar triangles, show that

$$
\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AC}}{\mathrm{AB}} \text { and hence that } \frac{\mathrm{CD}}{\mathrm{BD}}=\frac{\mathrm{AC}^{2}}{\mathrm{AB}^{2}} \text {. }
$$

(iii) By writing down and using two further similar expressions, show that the points D, E, F are collinear.
7. [Maximum mark: 18]

The discrete random variable X has the following probability distribution.

$$
\mathrm{P}(X=x)=\frac{k x}{3^{x}} \text { where } x \in \mathbb{Z}^{+} \text {and } k \text { is a constant. }
$$

(a) (i) Write down the first three terms of the infinite series for $G(t)$, the probability generating function for X.
(ii) Determine the radius of convergence of this infinite series.
(iii) By considering $\left(1-\frac{t}{3}\right) G(t)$, show that

$$
G(t)=\frac{3 k t}{(3-t)^{2}} .
$$

(iv) Hence show that $k=\frac{4}{3}$.
(b) (i) Show that $\ln G(t)=\ln 4+\ln t-2 \ln (3-t)$.
(ii) By differentiating both sides of this equation, determine the values of $G^{\prime}(1)$ and $G^{\prime \prime}(1)$.
(iii) Hence find $\operatorname{Var}(X)$.
8. [Maximum mark: 17]

The set $S_{n}=\{1,2,3, \ldots, n-2, n-1\}$, where n is a prime number greater than 2 , and \times_{n} denotes multiplication modulo n.
(a) (i) Show that there are no elements $a, b \in S_{n}$ such that $a \times_{n} b=0$.
(ii) Show that, for $a, b, c \in S_{n}, a \times_{n} b=a \times_{n} c \Rightarrow b=c$.
(b) Show that $G_{n}=\left\{S_{n}, \times_{n}\right\}$ is a group. You may assume that \times_{n} is associative.
(c) (i) Show that the order of the element $(n-1)$ is 2 .
(ii) Show that the inverse of the element 2 is $\frac{1}{2}(n+1)$.
(iii) Explain why the inverse of the element 3 is $\frac{1}{3}(n+1)$ for some values of n but not for other values of n.
(iv) Determine the inverse of the element 3 in G_{11}.
(v) Determine the inverse of the element 3 in G_{31}.
9. [Maximum mark: 17]
(a) The point (x, y) is rotated through an anticlockwise angle α about the origin to become the point (X, Y). Assume that the rotation can be represented by

$$
\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

Show, by considering the images of the points $(1,0)$ and $(0,1)$ under this rotation that

$$
\left[\begin{array}{ll}
a & b \tag{3}\\
c & d
\end{array}\right]=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] .
$$

(b) The hyperbola with equation $x^{2}-4 x y-2 y^{2}=3$ is rotated through an acute anticlockwise angle α about the origin.
(i) By expressing (x, y) in terms of (X, Y), determine the equation of the rotated hyperbola in terms of X and Y.
(ii) Verify that the coefficient of $X Y$ in the equation is zero when $\tan \alpha=\frac{1}{2}$.
(iii) Determine the equation of the rotated hyperbola in this case, giving your answer in the form $\frac{X^{2}}{A^{2}}-\frac{Y^{2}}{B^{2}}=1$.
(iv) Hence find the coordinates of the foci of the hyperbola prior to rotation.

