Markscheme

May 2017

Further mathematics

Higher level

Paper 1

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to $\mathrm{RM}^{\top \mathrm{M}}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2017". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp AO by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M O}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means M1 for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A} \mathbf{1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$. (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Misread

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

7
 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3))
$$

Award A1 for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) $H_{0}: \mu=5.5 ; H_{1}: \mu \neq 5.5$

A1
[1 mark]
(b) $\quad \sum x=53.9, \hat{\mu}=5.39$
(M1)A1
$\sum x^{2}=290.7132, \hat{\sigma}^{2}=0.0214$
(M1)A1
[4 marks]
(c) (i) attempt to use the t-test
(M1)
$t=-2.38$ (Accept +2.38)
(A1)
DF $=9$
p-value $=0.0412$
(ii) the claim is not supported (not accepted, rejected) at the 5% level of significance
2. (a) multiplying both sides by a^{p-2},

M1
$a^{p-1} x \equiv a^{p-2} b(\bmod p) \quad$ A1
using $a^{p-1} \equiv 1(\bmod p) \quad \boldsymbol{R 1}$
therefore, $x \equiv a^{p-2} b(\bmod p) \quad$ AG
(b) using the above result,
$x \equiv 3^{17} \times 13(\bmod 19)(\equiv 1678822119(\bmod 19))$
$\equiv 17(\bmod 19)$
(M1)A1
$x=112$

A1
[4 marks]
3. (a) using row operations on 4×5 matrix,

$$
\left[\begin{array}{cccc}
1 & 2 & 1 & 3 \\
0 & -3 & 1 & -5 \\
0 & -9 & 3 & -15 \\
0 & -3 & 1 & -5
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
\lambda-10 \\
\mu-6
\end{array}\right] \begin{aligned}
& \operatorname{row} 2-2 \times \text { row1 } \\
& \operatorname{row} 3-5 \times \text { row1 } \\
& \operatorname{row} 4-3 \times \text { row1 }
\end{aligned}
$$

or any alternative correct row reductions

Note: Award A1 for two correct row reductions.

$$
\begin{array}{ll}
\hline \lambda=7 & \text { A1 } \\
\mu=5 & \text { A1 }
\end{array}
$$

(b) let $x_{3}=\alpha, x_{4}=\beta$

$$
\begin{array}{ll}
x_{2}=\frac{1+\alpha-5 \beta}{3} \\
x_{1}=\frac{4-5 \alpha+\beta}{3}
\end{array} \quad \text { A1 }
$$

Note: Alternative solutions are available.
[3 marks]
(c) the rank is 2

A1
because the matrix has 2 independent rows or a correct comment based on the use of rref

R1
[2 marks]

Total [10 marks]

4. (a) let M, F denote the weights of the male, female consider $D=M-2 F$

> (M1)
$\mathrm{E}(D)=80-2 \times 54=-28 \quad$ A1
$\operatorname{Var}(D)=7^{2}+4 \times 5^{2}$
(M1)
$=149$
A1
$\mathrm{P}(M>2 F)=\mathrm{P}(D>0)$
$=0.0109$
Note: Accept any answer that rounds correctly to 0.011 .
[6 marks]
continued...

Question 4 continued
(b) consider $\mathrm{S}=\sum_{i=1}^{3} M_{i}+\sum_{i=1}^{6} F_{i}$

Note: Condone the use of the incorrect notation $3 M+6 F$.
$\mathrm{E}(S)=3 \times 80+6 \times 54=564$
$\operatorname{Var}(S)=3 \times 7^{2}+6 \times 5^{2}$
$=297$
$\mathrm{P}(S>550)=0.792$
Note: Accept any answer that rounds correctly to 0.792 .

Total [11 marks]

5. (a) since $\sum u_{n}$ is convergent, it follows that $\lim _{n \rightarrow \infty} u_{n}=0$ therefore, there exists N such that for $n \geq N, u_{n}<1$

R1 R1

Note: Accept as n gets larger, eventually $u_{n}<1$.
therefore (for $n \geq N$), $u_{n}^{2}<u_{n} \quad \boldsymbol{R 1}$
by the comparison test, $\sum u_{n}^{2}$ is convergent $\boldsymbol{R} \mathbf{1}$
(b) (i) the converse proposition is that if $\sum u_{n}^{2}$ is convergent, then $\sum u_{n}$ is also convergent

A1
(ii) a suitable counter-example is $u_{n}=\frac{1}{n}$ (for which $\sum u_{n}^{2}$ is convergent but $\sum u_{n}$ is not convergent)
6. (a) the order is 6

A1
tracking 1 through successive powers of P returns to 1 after 6 transitions (or equivalent)

R1

A1
[2 marks]
Total [6 marks]
[2 marks]
(b) $\quad P^{2}=\left(\begin{array}{lll}1 & 5\end{array}\right)(263)$ or $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 2 & 1 & 4 & 3\end{array}\right)$

Question 6 continued
(c) since P is of order $6, P^{3}$ will be of order 2

R1

$$
\begin{aligned}
& P^{3}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 1 & 4 & 3 & 6 & 5
\end{array}\right) \\
& \left.P^{3}=(12)(34)(5) 6\right)
\end{aligned}
$$

7. (a) (i) $f^{\prime}(x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}-2 \sin x}{4}$

$$
\begin{align*}
& f^{\prime \prime}(x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}-2 \cos x}{4} \\
& f^{\prime \prime \prime}(x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}+2 \sin x}{4} \tag{A1}\\
& f^{(4)}(x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}+2 \cos x}{4}=f(x)
\end{align*}
$$

(ii) therefore,

$$
\begin{align*}
& f(0)=1 \text { and } f^{(4)}(0)=1 \tag{A1}\\
& f^{\prime}(0)=f^{\prime \prime}(0)=f^{\prime \prime \prime}(0)=0
\end{align*}
$$

the sequence of derivatives repeats itself so the next non-zero derivative is $f^{(8)}(0)=1$
the MacLaurin series is $1+\frac{x^{4}}{4!}+\frac{x^{8}}{8!}(+\ldots)$
(b) (i) $p=P(X=0)+P(X=4)+P(X=8)+\ldots$

> (M1)
$=\frac{\mathrm{e}^{-\mu} \mu^{0}}{0!}+\frac{\mathrm{e}^{-\mu} \mu^{4}}{4!}+\frac{\mathrm{e}^{-\mu} \mu^{8}}{8!}+\ldots$
(ii) $\quad p=\mathrm{e}^{-\mu}\left(1+\frac{\mu^{4}}{4!}+\frac{\mu^{8}}{8!}+\ldots\right)$
$=\mathrm{e}^{-\mu} f(\mu)$
(iii) $p=\mathrm{e}^{-3}\left(\frac{\mathrm{e}^{3}+\mathrm{e}^{-3}+2 \cos 3}{4}\right)$
$=0.226$
8. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$
(M1)
$=\frac{2 a}{2 a t}=\frac{1}{t}$
the gradient of the normal $=-t$
the equation of the normal at T is $y-2 a t=-t\left(x-a t^{2}\right)$
substituting the coordinates of S ,
$2 a s-2 a t=-t\left(a s^{2}-a t^{2}\right)$
$2 a(s-t)=-a t(s-t)(s+t)$
A1
$2=-t(s+t)=-s t-t^{2}$
$t^{2}+s t+2=0$
(b) gradient of $\mathrm{OT}=\frac{2 a t}{a t^{2}}=\frac{2}{t}$
gradient of $\mathrm{OS}=\frac{2 a s}{a s^{2}}=\frac{2}{s}$
the condition for perpendicularity is $\frac{2}{t} \times \frac{2}{s}=-1$ M1
$t^{2}-4+2=0$ A1
$t= \pm \sqrt{2}$

Total [12 marks]

9. (a) consider $\lim _{x \rightarrow \infty} \frac{x^{n}}{\mathrm{e}^{x}}$
its value is $\frac{\infty}{\infty}$ so we use l'Hôpital's rule
$\lim _{x \rightarrow \infty} \frac{x^{n}}{\mathrm{e}^{x}}=\lim _{x \rightarrow \infty} \frac{n x^{n-1}}{\mathrm{e}^{x}}$
its value is still $\frac{\infty}{\infty}$ so we need to differentiate numerator and denominator a
further $n-1$ times
this gives $\lim _{x \rightarrow \infty} \frac{n!}{\mathrm{e}^{x}}$
since the numerator is finite and the denominator $\rightarrow \infty$, the limit is zero

Question 9 continued
(b) (i) attempt at integration by parts $\left(I_{n}=-\int_{1}^{\infty} x^{n} \mathrm{~d}\left(\mathrm{e}^{-x}\right)\right)$
$I_{n}=-\left[x^{n} \mathrm{e}^{-x}\right]_{1}^{\infty}+n \int_{1}^{\infty} x^{n-1} \mathrm{e}^{-x} \mathrm{~d} x$
$=\mathrm{e}^{-1}+n I_{n-1}$ A1
$\alpha=\beta=1$
(ii) $\quad I_{3}=\mathrm{e}^{-1}+3 I_{2}$
$=\mathrm{e}^{-1}+3\left(\mathrm{e}^{-1}+2 I_{1}\right)$ A1
$=4 \mathrm{e}^{-1}+6\left(\mathrm{e}^{-1}+I_{0}\right)$
$=4 \mathrm{e}^{-1}+6 \mathrm{e}^{-1}+6 \int_{1}^{\infty} \mathrm{e}^{-x} \mathrm{~d} x$
$=10 \mathrm{e}^{-1}-6\left[\mathrm{e}^{-x}\right]_{1}^{\infty}$
A1
$=16 \mathrm{e}^{-1}$
10. (a) closure: let $\boldsymbol{A}, \boldsymbol{B} \in G$
(because $\boldsymbol{A B}$ is a 2×2 matrix)
and $\operatorname{det}(\boldsymbol{A B})=\operatorname{det}(\boldsymbol{A}) \operatorname{det}(\boldsymbol{B})=1 \times 1=1$
identity: the 2×2 identity matrix has determinant 1
inverse: let $\boldsymbol{A} \in G$. Then \boldsymbol{A} has an inverse because it is non-singular
since $\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{I}, \operatorname{det}(\boldsymbol{A}) \operatorname{det}\left(\boldsymbol{A}^{-1}\right)=\operatorname{det}(\boldsymbol{I})=1$ therefore $\boldsymbol{A}^{-1} \in G$
associativity is assumed
the four axioms are satisfied therefore $\{G, *\}$ is a group
(b) closure: let $\boldsymbol{A}, \boldsymbol{B} \in H$. Then $\boldsymbol{A B} \in H$ because the arithmetic involved produces elements that are integers
inverse: $\boldsymbol{A}^{-1} \in H$ because the calculation of the inverse involves interchanging the elements and dividing by the determinant which is 1
the identity (and associativity) follow as above
therefore $\{H, *\}$ is a subgroup of $\{G, *\}$
Note: Award the A1 only if the first two $\mathbf{R 1}$ marks are awarded but not necessarily the third $\mathbf{R 1}$.
Note: Accept subgroup test.
11. (a) (i) the sum of degrees of the vertices is even (36) or the sum of degrees of the vertices is twice the number of edges

A1
$\begin{array}{lc}\text { (ii) the number of edges }(e) \text { is } 18 & \text { A1 } \\ \text { using Euler's relation } v-e+f=2 & \text { M1 }\end{array}$ using Euler's relation $v-e+f=2 \quad$ M1 $f=2+18-8=12 \quad$ A1 [4 marks]
(b) if K is planar then $e \leq 3 v-6 \quad$ M1
$v=8$ and $e=19 \quad$ A1
the inequality is not satisfied so K is not planar A1AG
(c) (i) let PQRP be a cycle of length 3 in a graph M1

Note: Accept a diagram instead of this statement.
suppose the graph is bipartite
then P must belong to one of the two disjoint sets of vertices and Q, R must belong to the other disjoint set

R1
but Q, R cannot belong to the same set because they are linked R1 therefore the graph cannot be bipartite AG
(ii) for example, a suitable cycle of order 3 is AFHA
(M1)A1
Note: Award M1 for a valid attempt at drawing the complement or constructing its adjacency table.
12. (a) (i)

(M1)A1
(ii) (because of the symmetry of the result), the other two medians also pass through E.
(b) (i)

$\overrightarrow{\mathrm{BF}}=\boldsymbol{f}-\boldsymbol{b}$ and $\overrightarrow{\mathrm{AC}}=\boldsymbol{c}-\boldsymbol{a}$
since FB is perpendicular to AC, $(\boldsymbol{b}-\boldsymbol{f}) \cdot(\boldsymbol{c}-\boldsymbol{a})=0$
similarly since FC is perpendicular to BA, $(\boldsymbol{c}-\boldsymbol{f}) \cdot(\boldsymbol{a}-\boldsymbol{b})=0$

Question 12 continued
(ii) expanding these equations and adding,

M1
$\boldsymbol{b} \cdot \boldsymbol{c}-\boldsymbol{b} \cdot \boldsymbol{a}-\boldsymbol{f} \cdot \boldsymbol{c}+\boldsymbol{f} \cdot \boldsymbol{a}+\boldsymbol{c} \cdot \boldsymbol{a}-\boldsymbol{c} \cdot \boldsymbol{b}-\boldsymbol{f} \cdot \boldsymbol{a}+\boldsymbol{f} \cdot \boldsymbol{b}=\mathbf{0}$
A1
$-\boldsymbol{b} \cdot \boldsymbol{a}-\boldsymbol{f} \cdot \boldsymbol{c}+\boldsymbol{c} \cdot \boldsymbol{a}+\boldsymbol{f} \cdot \boldsymbol{b}=\mathbf{0}$
A1
leading to $(\boldsymbol{a}-\boldsymbol{f}) \cdot(\boldsymbol{c}-\boldsymbol{b})=0$
AG
(iii) this result shows that AF is perpendicular to BC so that the three altitudes are concurrent (at F)

Total [12 marks]

13. (a) (i) $\frac{\bar{X}-\mu}{\sigma}$ is $\mathrm{N}(0,1)$ or it has the Z -distribution

$$
\frac{0}{\sqrt{n}}
$$

(ii) attempt to make a probability statement
therefore with probability 0.95 ,
$-1.96 \leq \frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \leq 1.96$
$-1.96 \frac{\sigma}{\sqrt{n}} \leq \bar{X}-\mu \leq 1.96 \frac{\sigma}{\sqrt{n}}$
$1.96 \frac{\sigma}{\sqrt{n}} \geq \mu-\bar{X} \geq-1.96 \frac{\sigma}{\sqrt{n}}$
$\bar{X}+1.96 \frac{\sigma}{\sqrt{n}} \geq \mu \geq \bar{X}-1.96 \frac{\sigma}{\sqrt{n}}$
Note: Award the final A1 for either of the above two lines.

$$
\bar{X}-1.96 \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}
$$

(b) (i) you cannot make a probability statement about a constant lying in a constant interval OR the mean either lies in the interval or it does not

A1
(ii) the confidence interval is the observed value of a random interval OR if the process is carried out a large number of times, μ will lie in the interval 95% of the times
14. (a) using the binomial theorem,

$$
10^{n}=(11-1)^{n}=11^{n}-n \times 11^{n-1}+\frac{n(n-1)}{2} \times 11^{n-2}+\ldots+n \times 11 \times(-1)^{n-1}+(-1)^{n}
$$

since every term except the last one is divisible by 11, it follows that $10^{n} \equiv(-1)^{n}(\bmod 11)$
(b) (i) consider the decimal number
$N=a_{n} a_{n-1} \ldots a_{1} a_{0}$ where n is odd (ie, an even number of digits)
so $N=a_{n} \times 10^{n}+a_{n-1} \times 10^{n-1}+\ldots+a_{1} \times 10+a_{0}$
using the result in (a), since n is odd,
$N \equiv a_{n} \times(-1)+a_{n-1} \times(+1)+\ldots+a_{1} \times(-1)+a_{0}(\bmod 11)$
since N is palindromic,
$a_{n}=a_{0} ; a_{n-1}=a_{1} ; \ldots$
therefore,
$N \equiv\left(a_{0}-a_{n}\right)+\left(a_{n-1}-a_{1}\right)+\ldots$
$\equiv 0(\bmod 11)$
hence N is divisible by 11 AG
(ii) for example, 131 (or even 3) is not divisible by 11
15. (a) (i) let $\alpha_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\alpha_{3} \boldsymbol{v}_{3}=\mathbf{0}$
take the dot product with v_{1}
$\alpha_{1} \boldsymbol{v}_{1} \cdot \boldsymbol{v}_{1}+\alpha_{2} \boldsymbol{v}_{2} \cdot \boldsymbol{v}_{1}+\alpha_{3} \boldsymbol{v}_{3} \cdot \boldsymbol{v}_{1}=\mathbf{0}$
A1
because the vectors are orthogonal, $\boldsymbol{v}_{2} \cdot \boldsymbol{v}_{1}=\boldsymbol{v}_{3} \cdot \boldsymbol{v}_{1}=\mathbf{0}$ R1
and since $\boldsymbol{v}_{1} \cdot \boldsymbol{v}_{1}>0$ it follows that $\alpha_{1}=0$ and similarly, $a_{2}=\alpha_{3}=0$ R1
so $\alpha_{1} \boldsymbol{v}_{1}+\alpha_{2} \boldsymbol{v}_{2}+\alpha_{3} \boldsymbol{v}_{3}=\mathbf{0} \Rightarrow \alpha_{1}=\alpha_{2}=\alpha_{3}=0$ therefore $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ are linearly independent
(ii) the three vectors form a basis for \mathbb{R}^{3} because they are (linearly) independent
(b) (i) $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]=0 ;\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]=0 ;\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]=0$
therefore the vectors form an orthogonal basis

Question 15 continued
(ii) let $\left[\begin{array}{l}2 \\ 8 \\ 0\end{array}\right]=\lambda\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]+\mu\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]+v\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$
$\lambda-\mu+\nu=2$
$\mu+2 v=8$
A1
$\lambda+\mu-v=0$
the solution is

$$
\left[\begin{array}{l}
\lambda \\
\mu \\
v
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad\left(\left[\begin{array}{l}
2 \\
8 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+2\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]+3\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]\right)
$$

