MARKSCHEME

November 2001

FURTHER MATHEMATICS

Standard Level

Paper 2

1. (i) Let X, Y be the mass of one bag and 10 bags respectively.

$$
\begin{gathered}
X \sim \mathrm{~N}\left(100 \mathrm{~g}, 1 \mathrm{~g}^{2}\right) \quad Y=X_{1}+X_{2}+\ldots+X_{10}, \text { so } Y \sim \mathrm{~N}\left(1000 \mathrm{~g}, 10 \mathrm{~g}^{2}\right) \\
\mathrm{P}(995<Y<1005)=0.886(3 \text { s.f. })
\end{gathered}
$$

(M1)(A1)
(M1)(A1)
OR

$$
\begin{equation*}
\mathrm{P}(995<Y<1005)=0.886 \tag{G2}
\end{equation*}
$$

(ii) (a) $\bar{X}=\frac{\sum x_{i} f_{i}}{100}=2.1$
(M1)(AG)
[1 mark]
(b) $\quad \mathrm{P}\left(X=x_{i}\right)=\frac{m^{x_{i}}}{x_{i}!} \mathrm{e}^{-m}$
(M1)
$\mathrm{P}(X=0)=\frac{2.1^{0}}{0!} \mathrm{e}^{-2.1}=0.122 \Rightarrow a=12.2$
$\mathrm{P}(X=2)=\frac{2.1^{2}}{2!} \mathrm{e}^{-2.1}=0.270 \Rightarrow b=27.0$. Also $c 100 \times(1-\mathrm{P}(\mathrm{X} \leq 5))=2.1$
$\mathrm{H}_{0}: \quad X$ can be modelled by the Poisson distribution Po (2.1)
H_{1} : X can not be modelled by the Poisson distribution $\mathrm{Po}(2.1)$.

$$
\begin{equation*}
\chi^{2}=\sum_{i=0}^{5} \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}=2.38 \text { (3 s.f.) } \tag{M1}
\end{equation*}
$$

OR

$$
\begin{equation*}
\chi^{2}=2.38 \tag{G2}
\end{equation*}
$$

degrees of freedom $v=4$
so $\chi_{(4,5 \%)}^{2}=9.488>2.38$

We can not reject H_{0} and conclude that we do not have enough evidence to (R1) say that the data cannot be modelled by a Poisson distribution with mean 2.1.
2. (i) (a) (i) Since the graph can be redrawn as follows:

(A1)

And since this graph contains $K_{3,3}$ as a sub-graph, then it cannot be planar because its sub-graph is not planar.
(ii) Second graph can be drawn in the following way:

Therefore the graph is planar.
(C1)
so by the theorem we can deduce that there is a Hamiltonian cycle.
(A1)
Note: Vertices are numbered in an anti-clockwise direction starting with the vertex of degree 2 at the top right corner.
(ii) $n=19 x+4$ and $n=11 y+1$
(M1)
$\Rightarrow 19 x-11 y=-3$

Since $(19,11)=1$, the equation has an integer solution.
Applying Euclid's algorithm we find:

$$
\left.\left.\begin{array}{rl}
19=11 \times 1+8 & a=b+r_{1} \tag{M1}\\
11 & =8 \times 1+3
\end{array} \quad \begin{array}{rl}
b=r_{1}+r_{2} \\
8 & =3 \times 2+2
\end{array} \quad r_{1}=2 r_{2}+r_{3}\right\} \begin{array}{l}
r_{1}=a-b \\
3
\end{array}\right\} \Rightarrow \begin{aligned}
& r_{2}=2 b-a \\
& r_{3}=3 a-5 b \\
& r_{4}=-4 a+7 b
\end{aligned}
$$

Since $r_{4}=1$ the particular solutions are to be found by the following:
$19 \times(-4)-11 \times(-7)=1 /$ multiply by $(-3) \Rightarrow 19 \times 12-11 \times 21=-3$
So $x_{0}=12$ and $y_{0}=21$.
The general solutions are $x=12-11 t, y=21-19 t, t \in \mathbb{Z}$ (M1)
$\Rightarrow n=232-209 t, t \in \mathbb{Z}$.

For values of $t \in\{1,0,-1\}$, the solutions are 23,232 , and 441 .
3. (i) Reflexive: $\boldsymbol{A} R \boldsymbol{A}$, because $\boldsymbol{A}=\boldsymbol{I}^{-1} \boldsymbol{A} \boldsymbol{I}$ and \boldsymbol{I} is an invertible matrix.
(C1)(C1)
(C1)
(M1)
(C1)

Transitive: $\boldsymbol{A} R \boldsymbol{B}$ and $\boldsymbol{B} R \boldsymbol{C}$, means that there are invertible matrices
(C1)
\boldsymbol{X} and \boldsymbol{Y} such that $\boldsymbol{B}=\boldsymbol{X}^{-1} \boldsymbol{A} \boldsymbol{X}, \boldsymbol{C}=\boldsymbol{Y}^{-1} \boldsymbol{B} \boldsymbol{Y} \Rightarrow \boldsymbol{C}=\boldsymbol{Y}^{-1} \boldsymbol{X}^{-1} \boldsymbol{A} \boldsymbol{X} \boldsymbol{Y}=(\boldsymbol{X} \boldsymbol{Y})^{-1} \boldsymbol{A}(\boldsymbol{X} \boldsymbol{Y})$,
where $\boldsymbol{X} \boldsymbol{Y}$ is an invertible matrix so consequently $\boldsymbol{A} R \boldsymbol{C}$.
(M1)
(C1)
[8 marks]
(ii) Theorem: if a and b are two elements of a subgroup then $a b^{-1}$ is also an element of the sub group.
Let S_{1} and S_{2} be two subgroups and $S_{1} \cap S_{2}$ be the intersection.
$a, b \in S_{1} \cap S_{2} \Rightarrow a, b \in S_{1} \Rightarrow a b^{-1} \in S_{1}$ and $a, b \in S_{2} \Rightarrow a b^{-1} \in S_{2}$
$\Rightarrow a b^{-1} \in S_{1} \cap S_{2}$.
Therefore $S_{1} \cap S_{2}$ is a subgroup of the same group.
(iii) (a) Using n to represent the equivalence class for n, the elements of $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ will be written as (i, j) where $i, j \in\{0,1, \ldots, p\}$.
Since the order of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ is 9 , then the possible order of a subgroup is 1,3 , or 9. Obviously $(0,0)$ and $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ itself are two of the subgroups.
We need to take the subgroups of order 3 .
Take the subgroup $\{(0,0),(0,1),(0,2)\}$. We can represent it as $\langle(0,1)\rangle$ since it is generated by $(0,1)$.
(C1)
(A1)(C1)
(b) For $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ the possible orders are again $0, p^{2}$ and p by Lagrange's Theorem.
So, the only groups we need to look for are the ones with order p.
Since the number of elements of $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ is p^{2} there there are $p^{2}-1$ generators for the subgroups.
Also for each subgroup we have $p-1$ generators. Therefore the number of subgroups of order p is $\frac{p^{2}-1}{p-1}=p+1$, and the total number of subgroups is then $p+3$
The other groups are: $\langle(1,0)\rangle,\langle(1,1)\rangle$, and $\langle(1,2)\rangle$. Each group can be generated by any of its "non-zero" elements - they are cyclic.
(A1)(C1)
(C1)
(R1)(C1)

硅
4. (i) (a) (i) Since $f(1)=g(1)=1, x=1$ is a solution.
(M1)(A1)
(ii) To use the Newton-Raphson method we consider the equation $h(x)=f(x)-g(x)=0$.

$$
x_{n+1}=x_{n}-\frac{h\left(x_{n}\right)}{h^{\prime}\left(x_{n}\right)}=x_{n}-\frac{3-2 x-\mathrm{e}^{1-x}}{\mathrm{e}^{1-x}-2}
$$

(M1)(M1)(A1)
By applying four iterations of the Newton-Raphson method we get $x=-0.256$.
(iii) h is continuous and differentiable over the set of real numbers, and $h^{\prime}(x)=\mathrm{e}^{1-x}-2$.
$h^{\prime}(x)=0$ when $x=1-\ln 2$. So, by Rolle's theorem, h must have two zeros - one before and one after 0 , which has been verified above. H cannot have solutions anywhere else, otherwise $h^{\prime}(x)$ will have to have another zero which is not possible. Therefore -0.256 and 1 are the only two zeros.
(b) Since this function is differentiable to the fourth order over the interval $[-0.256,1]$, then the error of the estimate for 8 intervals satisfies the following inequality:

$$
\begin{equation*}
|E| \leq \frac{(b-a)^{5} M}{180 n^{4}}=\frac{1.256^{5}}{180 \times 8^{4}} \cdot M \text { with } M=\max \left|f^{(4)}(x)\right| \text { on }[-0.256,1] \tag{R2}
\end{equation*}
$$

Now $\left|f^{(4)}(x)\right|=\mathrm{e}^{1-x}$ which has a max of approximately 4 , when $x=-0.256$.
(M1)(A1)
This will give an error of $0.000017<0.00002$.
(ii) Maclaurin's series for $\sin x$ requires that x be expressed in radians, hence $3^{\circ}=\frac{\pi}{180} \times 3=\frac{\pi}{60}$
Also,
$f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\ldots+R_{n} \Rightarrow$
$\sin x=0+x-\frac{x^{3}}{3!}+\ldots+\frac{x^{n+1}}{(n+1)!} f^{(n+1)}(c)$
(M1)(A1)
Since $f^{(n+1)}(x)= \pm \sin x$ or $\pm \cos x$, then $f^{(n+1)}(c)=1$
Thus $\left|R_{n}\right| \leq \frac{\left|\frac{\pi}{60}\right|^{n+1}}{(n+1)!} \leq 0.000005$, then by trial and error we find that the minimum $n=3$, this yields
$\sin 3^{\circ} \approx \frac{\pi}{60}-\frac{\left(\frac{\pi}{60}\right)^{3}}{3!} \approx 0.05234$
5. (i) (a)

Area $\Delta(\mathrm{ARS})=\frac{\mathrm{AR} \times \mathrm{SD}}{2}$
and Area $\Delta(\mathrm{RBS})=\frac{\mathrm{RB} \times \mathrm{SD}}{2}$
$\frac{\text { Area } \Delta(\mathrm{ARS})}{\text { Area } \Delta(\mathrm{RBS})}=\frac{\mathrm{AR}}{\mathrm{RB}}$
(b) $\frac{\mathrm{AR}}{\mathrm{RB}} \times \frac{\mathrm{BP}}{\mathrm{PC}} \times \frac{\mathrm{CQ}}{\mathrm{QA}}=\frac{\text { Area } \Delta(\mathrm{ARS})}{\text { Area } \Delta(\mathrm{RBS})} \times \frac{\text { Area } \Delta(\mathrm{BPS})}{\text { Area } \Delta(\mathrm{PCS})} \times \frac{\text { Area } \Delta(\mathrm{CQS})}{\text { Area } \Delta(\mathrm{QAS})}$
$=\frac{\mathrm{SA} \times \mathrm{SR} \times \sin (\mathrm{RSA})}{\mathrm{SR} \times \mathrm{SB} \times \sin (\mathrm{BSR})} \times \frac{\mathrm{SB} \times \mathrm{SP} \times \sin (\mathrm{BSP})}{\mathrm{SP} \times \mathrm{SC} \times \sin (\mathrm{PSC})} \times \frac{\mathrm{SC} \times \mathrm{SQ} \times \sin (\mathrm{CSQ})}{\mathrm{SQ} \times \mathrm{SA} \times \sin (\mathrm{QSA})}=1$
i.e. $\frac{\mathrm{AR}}{\mathrm{RB}}=\frac{\mathrm{BP}}{\mathrm{PC}}=\frac{\mathrm{CQ}}{\mathrm{QA}}=1$ (Ceva's theorem)
(ii)
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}=\frac{\cos t}{-4 \sin t} \Rightarrow \frac{\text { gradient }}{\text { tangent }}=\frac{-1}{4 \tan t}$
(M1)(A1)

For the line MP, the gradient $m=4 \tan t$.
Therefore $y-\sin t=4 \tan t(x-4 \cos t)$
$\Rightarrow \quad y=4 x \tan t-15 \sin t$.
The diameter through the point N goes through the origin (centre of the circle) so its equation is

$$
\begin{equation*}
y=x \tan t . \tag{A1}
\end{equation*}
$$

Now we have to solve the system $\left\{\begin{array}{c}y=4 x \tan t-15 \sin t \\ y=x \tan t\end{array}\right.$,
(M1)
$\Rightarrow x=5 \cos t, y=5 \sin t$.
Which is the parametric equation of a circle with radius 5 .
(b) The diameter through the point R has equation $y=-x \tan t$.

Solving the system $\left\{\begin{array}{c}y=4 x \tan t-15 \sin t \\ y=-x \tan t\end{array}\right.$
the coordinates of the point Q are found to be $(3 \cos t,-3 \sin t)$.
Since $t \in] 0, \frac{\pi}{2}[$ the locus is an arc of the circle,
the centre at the origin, and radius 3 . The arc goes from the point $(0,-3)$ to the point $(3,0)$, excluding the endpoints.

