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INSTRUCTIONS TO CANDIDATES

• Do not open this examination paper until instructed to do so.
• Answer all the questions.
• Unless otherwise stated in the question, all numerical answers must be given exactly or

to three significant figures, as appropriate.
• Write the make and model of your calculator on the front cover of your answer

booklets e.g. Casio fx-9750G, Sharp EL-9600, Texas Instruments TI-85.



You are advised to start each new question on a new page. A correct answer with no indication of the
method used will usually receive no marks. You are therefore advised to show your working. In
particular, where graphs from a graphic display calculator are being used to find solutions, you should
sketch these graphs as part of your answer.

1. [Maximum mark: 14]

(i) In a candy factory sweets are packed in bags whose masses are distributed
normally with a mean of 100 g and standard deviation of 1 g. Find the
probability that the mass of 10 bags selected at random will be within 5 g
of the expected mass? [4 marks]

(ii) A hospital in a town has recorded the number of newborn babies per day
during a period of 100 days, with the following results:

(a) Show that the mean number of newborn babies per day is 2.1 . [1 mark]

(b) It is believed that this distribution may be modelled by a Poisson
distribution. Some of the expected frequencies are given in the table
below.

(i) Calculate values of a , b and c .

(ii) Test, at the 5% level of significance, whether or not the given
distribution can reasonably be modelled by a Poisson distribution. [9 marks]

xi fo fe
0 8 a

1 28 25.7

2 31 b

3 18 18.9

4 9 9.9

5 6 9.9

6 or more 0 c

Number of babies (xi) 0 1 2 3 4 5

Number of days 8 28 31 18 9 6
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2. [Maximum mark: 19]

(i) (a) Which of the following graphs, if any, are planar? Justify your answer.

(i) (ii)

[6 marks]

(b) Ore’s theorem: In a simple graph G with n vertices, where n ≥ 3 , if
deg A + deg B ≥ n for each pair of two non-adjacent vertices A , B
in G then G is Hamiltonian.

Use the theorem to determine whether the following graph is
Hamiltonian and find, if possible, a Hamiltonian cycle.

[4 marks]

(ii) Find all positive integers n smaller than 500 such that n ≡ 4 (mod 19) and
n ≡ 1 (mod 11) . [9 marks]

P Q

U

T S

W R

C

A

F E
D

B

881–255 Turn over

– 3 – N01/540/S(2)



3. [Maximum mark: 23]

(i) M is the set of all n × n matrices. A relation R is defined on M as
follows:

A R B if and only if there exists an invertible matrix X such that
B = X–1 AX . Prove that R is an equivalence relation. [8 marks]

(ii) Show that the intersection of two subgroups of a group is a subgroup of
that group. [4 marks]

(iii) Let Zn be the group of integers under addition modulo n .

(a) Find all subgroups of Z3 × Z3 . [6 marks]

(b) Hence determine the number of subgroups of Zp × Zp , when p is
prime. [5 marks]
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4. [Maximum mark: 22]

(i) Let the functions f (x) and g (x) be defined by f (x) = 3 – 2x and
g (x) = e1 – x .

(a) Consider the equation f (x) = g (x) .

(i) Find the exact solution to this equation.

(ii) Use the Newton-Raphson method with a starting value x0 = 0 to
find an approximate solution to this equation. Give your answer
correct to three decimal places.

(iii) Use Rolle’s theorem to prove that these solutions are the only two
solutions to this equation. [10 marks]

(b) Let the area between the curves of y = f (x) and y = g (x) be denoted
by A . Given that h (x) = f (x) – g (x) , and that h(4) (x) = e1 – x , use
Simpson’s rule with 8 intervals to show that the maximum error in
evaluating A does not exceed 0.00002 . [5 marks]

(ii) Use the Maclaurin series expansion to approximate sin 3° , giving your
answer correct to five decimal places. [7 marks]
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5. [Maximum mark: 22]

(i) In triangle ABC , the points P , Q and R are on the sides [BC] , [CA]
and [AB] respectively. The lines (AP) , (BQ) and (CR) contain a
common point S .

(a) Show that the ratio of AR to BR is equal to the ratio of the areas
of the triangles ARS and RBS . [2 marks]

(b) Hence prove Ceva’s theorem. [5 marks]

(This question continues on the following page)
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(Question 5 continued)

(ii) An ellipse E and a circle C are defined by the following parametric
equations.

The points M on E and N on C have the same value s for the parameter t ,

where s � ] 0 , [ , and the point R on C has the value –s

for the parameter t .

(a) The normal to E through M cuts the diameter of C through N at
the point P . Show that the point P , as s varies, lies on a circle, and
find its radius. [10 marks]

(b) The normal to E through M cuts the diameter of C through R at
the point Q . Describe the locus of Q . [5 marks]

C
N

M

E

R

y

x

π
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