

MARKSCHEME

November 2001

FURTHER MATHEMATICS

Standard Level

Paper 1

1. *R* is reflexive since $x + y = x + y \Rightarrow (x, y) R(x, y)$ (C1) *R* is symmetric since if x + y = a + b then a + b = x + y and hence $(x, y) R(a, b) \Rightarrow (a, b) R(x, y)$ (C1) *R* is transitive since if x + y = a + b and a + b = c + d, then x + y = c + d and hence (M1) if (x, y) R(a, b) and (a, b) R(c, d) then (x, y) R(c, d). (C1) Partition: $\{\{(1, 1)\}; \{(1, 2), (2, 1)\}, \{(2, 2), (1, 3), (3, 1)\}, \{(2, 3), (3, 2), (1, 4), (4, 1)\}, \{(3, 3), (2, 4), (4, 2)\}, \{(3, 4), (4, 3)\}, \{(4, 4)\}\}$ (C1)

[5 marks]

(C1)

2. The series converges by the ratio test.

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{k+1}{e^{k+1}} \times \frac{e^k}{k} = \lim_{k \to \infty} \frac{k+1}{k} \times \lim_{k \to \infty} \frac{e^k}{e^{k+1}}$$
(M2)

$$=\frac{1}{e} < 1 \tag{A1}$$

Thus,
$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} < 1$$
 (R1)

3. Order is 6. (C1) $\{1\}, \{1, x, x^2\}, \{1, y\}, \{1, x^2y\}, G$ (A4)

Note: Award (A4) for all 6 correct, (A3) for 5, (A2) for 4, (A1) for 3.

[5 marks]

4.

=120

(M2)

(A2)

(A1)

[5 marks]

	(a)	(a) IB bisects the interior angle, EB bisects the exterior angle, hence the angle is a right angle.	
	(b)	Since triangle IBE is a right angled triangle then	
		$\left(\frac{\mathrm{BC}}{2}\right)^2 = r \times R \Longrightarrow (\mathrm{BC})^2 = 4rR$	[M2]
		\Rightarrow BC = $2\sqrt{rR}$	[A1]
			[5 marks]
6.	The	characteristic equation is $r^2 - 7r + 6 = 0$.	(C1)
	The	characteristic roots are 1 and 6.	(C1)
	The	solutions are of the form $a_n = c_1 \times 1^n + c_2 \times 6^n$.	(R1)
	With	the initial conditions we have a system of equations: $c_1 + c_2 = -1$ and $c_1 + 6c_2 = 4$,	
	whic	h gives $c_1 = -2$ and $c_2 = 1$.	(M1)
	Hen	the solution is $a_n = -2 + 6^n$.	(A1)
			[5 marks]
7.	Ther	e are 12 numbers on the list, so we set $i = 1$ and $j = 12$.	
	Ther	h let $k = \lfloor (1+12)/2 \rfloor = 6$	(R1)
	<i>a</i> (6)	= 39 < 43, so we set $i = 6 + 1 = 7$	(M1)
	k =	(7+12)/2 = 9	(A1)
	a(9)	= 67 > 43, so set $j = 8$.	(M1)
	Now	k = (7+8)/2 = 7	. ,
	a(7)	= 43, so the algorithm terminates by finding 43.	(R1)

[5 marks]

(a) Let X be the number of discs replaced. This is a Poisson distribution $X \sim Po(4)$

$$X \sim Po(4)$$
 (R1)
P(X = 7) = 0.0595 (G1)

(b)
$$P(X \ge 7) = 1 - P(X \le 6) = 1 - 0.8893 = 0.1107$$
(M1)Let Y be the number of weeks in which at least 7 discs are replaced.
 $Y \sim B(3, 0.1107)$ *i.e.* Y is binomially distributed(R1) $P(Y = 2) \equiv 0.0327$ (G1)

[5 marks]

9.

8.

Using Apollonius' theorem, $2\left(\frac{a}{2}\right)^{2} + 2(8)^{2} = 8^{2} + 10^{2}$

$$\frac{a^2}{2} = 36 \Longrightarrow a = 6\sqrt{2} \tag{A1}$$

Then use Heron's formula or any other approach to find the area Area = $\sqrt{(3\sqrt{2}+9)(9-3\sqrt{2})(3\sqrt{2}+1)(3\sqrt{2}-1)} = \sqrt{(81-18)(18-1)} = 3\sqrt{119}$ Area = 32.7 (3 s.f.)

[5 marks]

(M1)

(A1)

(R1)(M1)

10. We know that $P_n(0.2) = \sum_{0}^{n} \frac{0.2^n}{n!}$. The condition means that the remainder must be less than 0.0005 (C1)

$$\left|R_{n+1}(0.2)\right| \le e^{0.2} \frac{\left|0.2\right|^{n+1}}{(n+1)!} < 3^{0.2} \frac{\left|0.2\right|^{n+1}}{(n+1)!} < 1.25 \frac{1}{5^{n+1}(n+1)!}$$
(R1)

$$\Rightarrow 1.25 \frac{1}{5^{n+1}(n+1)!} < 0.0005 \Rightarrow 5^{n+1}(n+1)! > 2500$$
(R1)

The smallest integer that satisfies this inequality is n = 3. Thus

$$e^{0.2} = 1 + 0.2 + \frac{0.2^2}{2!} + \frac{0.2^3}{3!}$$

$$\approx 1.221$$
(C1)
(A1)

Note: Award no marks for a calculator answer of 1.221402758.

[5 marks]