MARKSCHEME

November 2001

FURTHER MATHEMATICS

Standard Level

Paper 1

1. $\quad R$ is reflexive since $x+y=x+y \Rightarrow(x, y) R(x, y)$
R is symmetric since if $x+y=a+b$ then $a+b=x+y$ and hence

$$
\begin{equation*}
(x, y) R(a, b) \Rightarrow(a, b) R(x, y) \tag{C1}
\end{equation*}
$$

R is transitive since if $x+y=a+b$ and $a+b=c+d$, then $x+y=c+d$ and hence
if $(x, y) R(a, b)$ and $(a, b) R(c, d)$ then $(x, y) R(c, d)$.
Partition: $\quad\{\{(1,1)\} ;\{(1,2),(2,1)\},\{(2,2),(1,3),(3,1)\},\{(2,3),(3,2),(1,4),(4,1)\}$, $\{(3,3),(2,4),(4,2)\},\{(3,4),(4,3)\},\{(4,4)\}\}$
2. The series converges by the ratio test.

$$
\begin{align*}
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}} & =\lim _{k \rightarrow \infty} \frac{k+1}{\mathrm{e}^{k+1}} \times \frac{\mathrm{e}^{k}}{k}=\lim _{k \rightarrow \infty} \frac{k+1}{k} \times \lim _{k \rightarrow \infty} \frac{\mathrm{e}^{k}}{\mathrm{e}^{k+1}} \tag{M2}\\
& =\frac{1}{\mathrm{e}}<1 \tag{A1}
\end{align*}
$$

$$
\begin{equation*}
\text { Thus, } \lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}<1 \tag{R1}
\end{equation*}
$$

3. Order is 6 .
$\{1\},\left\{1, x, x^{2}\right\},\{1, y\},\{1, x y\},\left\{1, x^{2} y\right\}, G$

Note: Award (A4) for all 6 correct, $(\boldsymbol{A 3})$ for 5, (A2) for 4, (A1) for 3.
4.

$$
\left.\begin{array}{rl}
\binom{5}{2} \\
7
\end{array}\right)=\binom{10}{7}
$$

5.

(a) IB bisects the interior angle, EB bisects the exterior angle, hence the angle is a right angle.
(b) Since triangle IBE is a right angled triangle then

$$
\begin{aligned}
& \left(\frac{\mathrm{BC}}{2}\right)^{2}=r \times R \Rightarrow(\mathrm{BC})^{2}=4 r R \\
& \Rightarrow \mathrm{BC}=2 \sqrt{r R}
\end{aligned}
$$

6. The characteristic equation is $r^{2}-7 r+6=0$.

The characteristic roots are 1 and 6 .
The solutions are of the form $a_{n}=c_{1} \times 1^{n}+c_{2} \times 6^{n}$.
With the initial conditions we have a system of equations: $c_{1}+c_{2}=-1$ and $c_{1}+6 c_{2}=4$, which gives $c_{1}=-2$ and $c_{2}=1$.
Hence the solution is $a_{n}=-2+6^{n}$.
7. There are 12 numbers on the list, so we set $i=1$ and $j=12$.

$$
\begin{equation*}
\text { Then let } k=\lfloor(1+12) / 2\rfloor=6 \tag{R1}
\end{equation*}
$$

$a(6)=39<43$, so we set $i=6+1=7$
$k=\lfloor(7+12) / 2\rfloor=9$
$a(9)=67>43$, so set $j=8$.
Now, $k=\lfloor(7+8) / 2\rfloor=7$
$a(7)=43$, so the algorithm terminates by finding 43 .
8. (a) Let X be the number of discs replaced.

This is a Poisson distribution $X \sim \operatorname{Po}(4)$

$$
\mathrm{P}(X=7)=0.0595
$$

(b) $\quad \mathrm{P}(X \geq 7)=1-\mathrm{P}(X \leq 6)=1-0.8893=0.1107$

Let Y be the number of weeks in which at least 7 discs are replaced.
$Y \sim \mathrm{~B}(3,0.1107)$ i.e. Y is binomially distributed
$\mathrm{P}(Y=2) \equiv 0.0327$
9.

Using Apollonius' theorem, $2\left(\frac{a}{2}\right)^{2}+2(8)^{2}=8^{2}+10^{2}$
(R1)(M1)

$$
\begin{equation*}
\frac{a^{2}}{2}=36 \Rightarrow a=6 \sqrt{2} \tag{A1}
\end{equation*}
$$

Then use Heron's formula or any other approach to find the area
Area $=\sqrt{(3 \sqrt{2}+9)(9-3 \sqrt{2})(3 \sqrt{2}+1)(3 \sqrt{2}-1)}=\sqrt{(81-18)(18-1)}=3 \sqrt{119}$ (M1)

Area $=32.7$ (3 s.f.)

(A1)

10. We know that $P_{n}(0.2)=\sum_{0}^{n} \frac{0.2^{n}}{n!}$. The condition means that the remainder must be less than 0.0005
$\left|R_{n+1}(0.2)\right| \leq \mathrm{e}^{0.2} \frac{|0.2|^{n+1}}{(n+1)!}<3^{0.2} \frac{|0.2|^{n+1}}{(n+1)!}<1.25 \frac{1}{5^{n+1}(n+1)!}$
$\Rightarrow 1.25 \frac{1}{5^{n+1}(n+1)!}<0.0005 \Rightarrow 5^{n+1}(n+1)!>2500$
The smallest integer that satisfies this inequality is $n=3$. Thus

$$
\begin{align*}
\mathrm{e}^{0.2} & =1+0.2+\frac{0.2^{2}}{2!}+\frac{0.2^{3}}{3!} \tag{C1}\\
& \cong 1.221
\end{align*}
$$

(A1)

Note: Award no marks for a calculator answer of 1.221402758 .

