

International Baccalaureate[®] Baccalauréat International Bachillerato Internacional

COMPUTER SCIENCE HIGHER LEVEL PAPER 1

Thursday 17 November 2011 (afternoon)

2 hours 15 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Section A: answer all the questions.
- Section B: answer all the questions.

[4 marks]

SECTION A

Answer all the questions.

1.	(a)	State one advantage and one disadvantage of communication by <i>electronic mail</i> rather than by telephone.	[2 marks]
	(b)	Outline two possible measures that prevent computers from being affected by <i>viruses</i> , when using electronic mail.	[2 marks]
2.	(a)	State one application that uses <i>robots</i> .	[1 mark]
	(b)	Outline two advantages of using robots rather than manual-based systems.	[2 marks]
3.	Acc	de for representing colours is used, where each colour is stored using 8 bits.	
	(a)	State the number of different colours that can be represented.	[1 mark]
	(b)	The <i>binary</i> representation of a particular colour is shown below.	
		0 0 0 1 1 1 0 0	
		(i) State the <i>decimal</i> representation of this colour. Show all of your working.	[2 marks]
		(ii) State the <i>hexadecimal</i> representation of this colour.	[1 mark]
4.	(a)	Define the term <i>syntax</i> .	[1 mark]
	(b)	Define the term <i>semantics</i> .	[1 mark]
	(c)	Describe, using examples from the code below, how each of the following types of error could occur: <i>syntax error</i> , <i>logical error</i> and <i>run-time error</i> .	
		a = b / c + d	[3 marks]

5. Systems analysis, software design and program construction are all stages of the *software life cycle*.

Outline two other stages in the software life cycle.

6.	(a)	Using computer memory as an example, outline the meaning of the term <i>volatile</i> .	[2 marks]
	(b)	Outline the reasons for having both <i>primary memory</i> and <i>secondary memory</i> .	[2 marks]
	(c)	Explain why a hard disk might need to be defragmented.	[3 marks]
7.	(a)	Define the term <i>operand</i> .	[1 mark]
	(b)	Define the term <i>operator</i> .	[1 mark]
	(c)	Convert the following <i>infix</i> expression into a <i>prefix</i> expression.	
		a * (b + c * d)	[1 mark]
	(d)	Calculate the value of the following <i>postfix</i> expression.	
		5 3 7 + * 4 -	[1 mark]
8.	Defi	ne direct memory access (DMA).	[1 mark]
9.	Des	cribe the function of the following processor components.	
	()		[2]]]

- (a) accumulator [2 marks]
- (b) program counter [2 marks]
- **10.** Consider the following binary search tree.

Draw the resulting binary search tree after

- (a) deleting H from the initial tree; [1 mark]
 (b) deleting C from the initial tree; [1 mark]
- (c) deleting E from the initial tree.

Turn over

[2 marks]

SECTION B

Answer all the questions.

11. Consider the array and algorithm shown below.

	[0] [1] [2] [3] [4]				
	A 1.5 7.2 3.6 5.3 0.1				
for	<pre>for (int index = 4; index > 0; index = index - 1)</pre>				
<pre>{ i f f f { / i / i</pre>	<pre>int j = index; for (int i = index - 1; i >= 0; i = i - 1) { if (A[i] < A[j]) { j = i; } } if (j != index) { double w = A[j]; A[j] = A[index]; A[index] = w; }</pre>				
(a)	Outline the operation of the outer for loop.	[2 marks]			
(b)	Analyse the efficiency of the algorithm in terms of BigO notatio	n. [3 marks]			
(c)	Identify, by tracing the algorithm or otherwise, the contents of the each execution of the outer loop.	he array A after [4 marks]			
(d)	State the purpose of the algorithm.	[1 mark]			
A pr data write mad	program accesses a text file on disk. To edit the text the user of the a using a keyboard. The program then amends the text which was re- ites the updated file back to disk and produces a printed report of a de to the text file.	program enters ad from the file, all amendments			
(a)	Construct a systems flowchart representing this process.	[4 marks]			
The data on disk can be lost due to various errors.					
(b)	(i) State two examples of how data can be lost due to human	error. [2 marks]			
	(ii) State two examples of how data can be lost other than by h	human error. [2 marks]			
	(iii) Describe how data lost from disk could be recovered.	[2 marks]			

12.

13.	(a)	State two problems associated with the use of images, that have large file sizes, in computer systems.	[2 marks]
	(b)	One photograph is estimated to occupy 2000 KB. Outline the steps needed to calculate the number of gigabytes (GB) required for 50 000 photographs.	[2 marks]
	(c)	Outline one advantage of using <i>data compression</i> software on stored images.	[2 marks]
	(d)	Discuss the ethical considerations linked to the misuse of image processing software.	[4 marks]
14.	A ga by a	rage uses a computer system to test whether the amount of exhaust fumes emitted car is at an acceptable level.	
	A se	nsor, used to measure exhaust fumes, is placed in the exhaust pipe.	
	(a)	Outline the processing taking place in this computer system.	[4 marks]
	(b)	Explain why the sensor data needs to be converted before being processed.	[2 marks]
	(c)	Outline three errors that can occur in this system.	[3 marks]
	(d)	Identify one appropriate output device for this system.	[1 mark]

15. (a) Determine the value of the following expression, where A = true and B = false. Show each step of your working.

$$\overline{A+B}+B\bullet A$$
 [2 marks]

(b) Consider the following logic circuit.

State the Boolean expression in terms of inputs A, B and C for output

- (i) W; [1 mark]
- (ii) Y; [1 mark]
- (iii) Z; [1 mark]

(c) Consider the following truth table.

А	В	С	Е
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- (i) Express the Boolean expression for output E from the above truth table. [2 marks]
- (ii) Simplify the expression.

[2 marks]

16. Consider the following Java class.

```
public class Point
{
  // point in the Cartesian plane
  private double x, y;
  public Point(double x, double y)
  {
     this.x = x;
     this.y = y;
  }
  public double getX() { return this.x; }
  public double getY() { return this.y; }
  public boolean isEqualTo(Point P)
  {
     return (this.x == P.getX() && this.y == P.getY());
  }
  public void showPoint()
  {
     output ("(" + this.x + ", " + this.y + ")");
  }
}
     Outline two features of classes.
                                                                            [2 marks]
(a)
(b)
    Outline the relationship between a class and an object.
                                                                            [2 marks]
     Consider the following code.
(c)
     Point A = new Point(5, 7);
     Point B = new Point(3, 0);
     A.showPoint();
     B.showPoint();
     if (A.isEqualTo(B))
     {
       output("are the same points");
     }
     else
     {
       output("are different points");
     }
     Explain line by line, how the output below is produced.
```

(5, 7)
(3, 0)
are different points

[6 marks]