

International Baccalaureate[®] Baccalauréat International Bachillerato Internacional

COMPUTER SCIENCE HIGHER LEVEL PAPER 1

Tuesday 16 November 2010 (afternoon)

2 hours 15 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Section A: answer all the questions.
- Section B: answer all the questions.

SECTION A

Ans	nswer all the questions.										
1.	(a) Outline the purpose of the <i>systems life cycle</i> mo	odel.	[2 marks]								
	(b) Identify the stage of the systems life cycle in which	ch a feasibility report is prepared.	[1 mark]								
2.	Draw a labelled diagram representing the basic structure of the <i>central processing unit</i> (CPU).										
3.	Customer orders are collected on paper, keyed in, and stored in the <i>customer orders file</i> . A stock <i>master file</i> is searched to determine whether sufficient stock is available and an appropriate report is produced.										
	Construct a systems flowchart representing the proces	s described above.	[5 marks]								
4.	Outline one example of <i>online processing</i> .		[2 marks]								
5.	State two features to be considered when comparing the speed of different processors.										
6.	(a) Convert the decimal number 20.5 into binary.		[2 marks]								
	(b) Convert the binary number 1010 1001 into hexa	decimal.	[1 mark]								
7.	Numbers can be stored in a computer in either <i>integer</i>	or floating-point representation.									
	(a) State one reason for using floating-point represe	entation.	[1 mark]								
	(b) State one reason for using integer representation	a.	[1 mark]								
8.	(a) State the register in which the results of all arith	metic operations are stored.	[1 mark]								
	(b) Define the term <i>overflow error</i> .		[2 marks]								
9.	State two types of <i>utility software</i> .		[2 marks]								

10.	(a)	State the BigO efficiency of a <i>binary search</i> algorithm.							
	(b)	State the BigO efficiency of a <i>bubble sort</i> algorithm.	[1 mark]						
11.	Data is collected by groups of students, on a field trip, and later transferred to a central computer.								
	(a)	Identify one method of <i>data capture</i> .							
	(b)	Identify one method of transferring data from the field to the central computer.							
	(c)	There have been concerns about the accuracy of the data. Outline how <i>verification</i> and <i>validation</i> can be used to ensure it is as accurate as possible.	[4 marks]						
12.	Define the term <i>encapsulation</i> .								
13.	(a)	State one type of <i>interrupt</i> .	[1 mark]						
	(b)	Outline the steps in the machine instruction cycle.	[3 marks]						

SECTION B

Answer all the questions.

14.	When a computer program is being developed errors may occur.									
	(a)	(a) Outline two types of possible errors, each with a suitable example.								
	(b)	(b) Describe three examples of software that assist in the development of computer programs.								
15.	(a)	Draw the resultant binary search tree after the items in the following list have been inserted.								
		6, 4, 8, 3, 5, 7, 9	[3 marks]							
	(b)	State the order in which items will be listed using pre-order traversal.	[2 marks]							
	(c)	c) State the tree traversal that will list the items in ascending order.								
	(d)	Discuss, using diagrams, how the original order of the data will affect the efficiency of searching the tree.	[4 marks]							
16.	A ho is co									
	(a)	Identify two ways in which the security of the network within the hospital can be ensured.	[2 marks]							
	(b)	Describe how data could be recovered in a case of corruption.	[4 marks]							
	Doc the c	tors, administrative staff and patients are permitted to access different parts of lata.								
	(c)	Outline how the network administrator can reduce the risk that sensitive patient data is seen by someone other than a doctor.	[4 marks]							

[1 mark]

17. (a) (i) Define the term *recursion*.

(ii) Describe **one** advantage and **one** disadvantage of recursion. [4 marks]

Examine the following recursive method.

```
public int mystery(int x, int y)
{
    if (x < y)
      { return 0; }
    else
      { return 1 + mystery(x - y, y); }
}</pre>
```

(b) State the value of variable w after

- (i) int w = mystery(2, 3); [1 mark]
- (ii) int w = mystery(2, 2); [1 mark]

- (c) Assuming that both arguments are positive, determine the purpose of the method mystery. [2 marks]
- 18. Consider the simplified logic circuit shown below. It has three inputs (X, Y and Z) and one output (OUT).

The output at **OUT** is the same as the input signal at **X** when the input signal at **Z** is 0. The output at **OUT** is the same as the input signal at **Y** when the input signal at **Z** is 1.

- (a) Construct a *truth table* that summarizes this behaviour. [3 marks]
- (b) (i) From the truth table, construct the Boolean expression for output **OUT** in terms of inputs **X**, **Y** and **Z**. [2 marks]
 - (ii) Show that the expression can be simplified to $\mathbf{YZ} + \mathbf{X\overline{Z}}$. [2 marks]
- (c) Draw the logic circuit corresponding to the expression $YZ + X\overline{Z}$. [3 marks]

Turn over

19. Consider the following program fragment.

```
int n = 8;
int p = 1;
int s = 0;
for (int c = 1; c < n; c = c + 1)
{
    if (c % 2 == 0)
    {       s = s + c; }
    else
    {       p = p * c; }
}
output("s = " + s);
output("p = " + p);
```

(a)	Construct the trace table, started below, for the program fragment.													[3 marks]	
		c c % 2 == 0 c < 8 p s output													
(b)	Determine the purpose of the program fragment.														[2 marks]
(c)	Rewrite the program fragment, converting the for loop into an equivalent														
	while loop.													[2 marks]	
(d)	Analyse the efficiency of the program fragment.												[3 marks]		

8810-7011