

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI N07/5/COMSC/HP1/ENG/TZ0/XX

COMPUTER SCIENCE HIGHER LEVEL PAPER 1

Monday 12 November 2007 (afternoon)

2 hours 15 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Section A: answer all the questions.
- Section B: answer all the questions.

SECTION A

Ans	wer all the questions.	
1.	Outline what is meant by <i>prototyping</i> .	[2 marks]
2.	Outline the function of the <i>linker</i> .	[2 marks]
3.	State three items of documentation that are usually included in a software package.	[3 marks]
4.	Describe how the computer carries out a machine instruction.	[4 marks]
5.	Outline what is meant by <i>double buffering</i> .	[2 marks]
6.	(a) Define <i>interrupt</i> .	[2 marks]
	(b) Describe how an interrupt is detected and identified by the processor.	[4 marks]
7.	Compare <i>batch</i> and <i>real time processing</i> .	[3 marks]
8.	(a) State three types of <i>file organization</i> .	[3 marks]
	(b) State two operations that are commonly carried out on files.	[2 marks]
9.	Given the following <i>recursive method</i> .	
	<pre>public static void charOut(char a, char b, int n) { if (n>0) { System.out.println(a); charOut(b,a,n-1); System.out.println(b); } }</pre>	
	Determine the output produced by the call charOut ('1', '2', 2). Show all your working.	[4 marks]

8807-7011

- **10.** Outline **two** advantages of using *bar codes* in a warehouse data collection system. [2 marks]
- **11.** A microprocessor embedded in a plastic card can be used to store information that can be read from, or stored on, the card using special terminals.

(a)	Outline one advantage and one disadvantage of such cards.	[2 marks]
(b)	Outline two conditions that need to be met for such cards to be widely used.	[2 marks]

- 12. By drawing an appropriate *truth table* determine whether the following *Boolean* expressions are equivalent or not.
 [3 marks]

$$A \cdot \overline{B}$$
$$\overline{A} + \overline{B} \cdot A$$

SECTION B

Answer all the questions.

13. Two of the most common computer operations are *sorting* and *searching*.

(a)	Explain what is meant by sorting.	[2 marks]
(b)	Explain what is meant by searching.	[2 marks]
(c)	State one example of internal sort method and state its efficiency in <i>BigO notation</i> .	[2 marks]
(d)	State one example of search method and state its efficiency in BigO notation.	[2 marks]
(e)	Sorts are time consuming and it may be a good policy to avoid them where possible. Explain how this could be done.	[2 marks]

14. A large company sets up a Wide Area Network (WAN) so that customers can place orders directly with the company's computer.

(a)	Identify the <i>hardware</i> needed by the customer to place an order.	[2 marks]
(b)	State one advantage to the company and one advantage to the customer of such a system.	[2 marks]
(c)	The communication uses a <i>packet switching</i> system. Explain how packet switching works.	[4 marks]
(d)	Compare parallel and serial transmission.	[2 marks]

15. An accounting system accepts data from a keyboard. Each *transaction record* consists of the following fields: account number, description and value. Data is stored in a *sequential transaction file*, validated, and all valid transactions copied to a *direct access file* and an error report produced.

(a)	Define an appropriate data structure to hold the transaction data.	[3 marks]
(b)	Draw a system flowchart representing this process.	[4 marks]
(c)	Explain the difference between transaction and master files.	[3 marks]

16. The linked list is held in memory in a table, which has room for 100 entries. The first item on the list is pointed to by the pointer start.

-7-

All free locations in the table are linked and nextAvailable is a pointer to the next free location in the table.

Each node consists of a student's name and a pointer to the next item in the list. Pointer -1 is the *sentinel value*.

The table currently holds four entries in such a way that they can be retrieved in alphabetical order

TUDENT'S NEXT			
NAME STUDENT		tart 0	start 0
Adams, Jose 3	0		
Furner, Ivor -1	1	extAvailable 4	nextAvailab
Kliss, Mary 1	2		
rown, Charlie 2	3		
5	4		
6	5		
7	6		
	•		
	•		
99	98		
-1	99		
9	- 98 99		

(a)	Determine the new state of the table and pointers start and nextAvailable after name Lohy, Ann has been inserted in the list given above.	[3 marks]
(b)	Determine the new state of the table and the pointers start and nextAvailable after name Kliss, Mary has been deleted from the original list.	[3 marks]
(c)	Describe, by means of diagrams, or otherwise, how this list can be held in a memory as a dynamic data structure.	[4 marks]

17.	An organization wishes to create a <i>database</i> containing all relevant members' data.		
	Data from hundreds of members' forms is collected.		
	(a)	Describe a suitable method of data input.	[2 marks]
	(b)	Describe a method to be used to reduce the number of input errors.	[2 marks]
	(c) Explain how the loss of <i>data integrity</i> can be minimized in the following types of errors		rors
		(i) program errors	[2 marks]
		(ii) errors in data transmission	[2 marks]

[2 marks] (iii) errors in operating procedures.

- **18.** Digital computers use binary codes to represent data.
 - (a) (i) Explain why digital computers are based on the *binary number system*. [2 marks]
 - (ii) State why the *hexadecimal number system* is frequently used in computing. [1 mark]
 - (b) Convert:
 - (i) $111100001010_{(2)} = ?_{(16)}$ [1 mark]
 - (ii) $347_{(16)} = ?_{(2)}$ [1 mark]
 - (c) A *two's complement* binary representation of a floating-point number with a ten-bit *mantissa* followed by a six-bit *exponent* is stored within the following register.

