COMPUTER SCIENCE
 HIGHER LEVEL
 PAPER 2

Wednesday 20 November 2002 (morning)
2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.

1. A small shop stocks drinks and other items for sale. Details of the items are held in a stock file with the following record structure:
```
newtype ITEM record
    CODE integer
    DESCRIPTION string
    PRICE real
    STOCK integer
    REORDER integer
    endrecord
```

declare DATA is ITEM file

Records are held in the DATA file in sequential order of CODE which is a 5-digit integer. The following algorithm conducts an iterative binary search of the DATA file.

```
procedure BINARYSEARCH(val WANTED integer,
                                    val SIZE integer,
                                    ref FOUND boolean,
                                    ref PLACE integer)
// FOUND returns true if the WANTED code is in the file
// PLACE returns its location in the file DATA
// SIZE is the number of components in the data file
// The first component of DATA is numbered 0
    declare MIDPOINT,LOW,HIGH,CODE integer
    declare CURRENT is ITEM
    FOUND <-- false
    LOW <-- 0
    HIGH<-- SIZE - 1
    while (HIGH >= LOW) and (not FOUND) do
        MIDPOINT <-- (LOW + HIGH) div 2
        moveto (DATA,MIDPOINT)
        input(DATA) CURRENT
        if CURRENT.CODE > WANTED then
            HIGH <-- MIDPOINT - 1
        elsif CURRENT.CODE < WANTED then
            LOW <-- MIDPOINT + 1
        else
            FOUND <-- true
        endif
    endwhile
    PLACE <-- MIDPOINT
endprocedure BINARYSEARCH
```

(This question continues on the following page)

(Question 1 continued)

(a) Outline why the parameters FOUND and PLACE are pass-by-reference.
(b) Outline one difference between a procedure and a function.
(c) Outline one difference between iterative and recursive algorithms.
(d) Construct the algorithm which implements the binary search as a recursive function which returns the place of the wanted item in the file or -1 if the item is not found.
(e) Outline a Boolean condition that could be used to ensure that the CODE numbers all have 5 digits.
(f) Construct the algorithm which conducts a linear (sequential) search of the data file and outputs the following information for each product whose Stock level is less than the Reorder level:

ITEM CODE
DESCRIPTION
SHORT (which equals REORDER minus STOCK)
The algorithm must also output the total value of the stock in the shop (that is the sum of STOCK*PRICE for every item).

(Question 1 continued)

The sales figures for each month are held in a 2D integer array SALES $[500,13]$ with the following structure:

	1	2	3	4	5	6	7	8	9	10	11	12	13
1	10232	112	209	187	93	103	163	231	206	194	300	314	256
2	10343	13	15	32	22	34	33	\ldots	\ldots
3	10344	324	504	342	564						
4	10356	53	43	34	...								
5	10412	2	3	\ldots									
6	11342	12	...										
7	etc.												
500	\ldots	\ldots	\ldots										

(all cells are filled with integer data)
The first column of the array contains the 5-digit ITEM number and the remaining columns contain the sales figures with column 2 being January sales, column 3 being February sales and so on.
(g) Construct the algorithm which outputs the following information for each product in the array:

This question requires the use of the Case Study.
2. (a) State one reason why the CT numbers are stored in 2 bytes even though only 12 bits are required for storage.
(b) Outline one difference and one similarity between parity checks and check sums used to ensure data integrity.
(c) Outline the meaning of the term handshaking.
(d) Modern investigations use digital modelling and simulation in preference to physical models, made of plaster, for example. Explain two advantages and two disadvantages of digital modelling compared to physical modelling.
(e) Outline any two ethical issues relating to the case study.
(f) Outline any two precautions that a researcher should take to ensure that his or her username and password are not found out by hackers.
(g) Explain one way in which the job of a researcher in this field might have changed since the introduction of CT.
[2 marks]
(h) Outline one advantage and one disadvantage of the world-wide-web as a medium for sharing scientific data such as the cranial reconstructions described in the case study.
3. Consider the following two algorithms used to delete an integer value from an array:

```
function SHUFFLE(var PLACE integer,
    ref INTARRAY integer array[1..SIZE]) result boolean
    if PLACE <= SIZE then
        for I <-- PLACE to (SIZE - 1) do
        INTARRAY[I] <-- INTARRAY[I+1]
        endfor
        return true
    else
    return false
    endif
end SHUFFLE
function MARK (var PLACE integer,
                        ref INTARRAY integer array[1..SIZE]) result boolean
    if PLACE <= SIZE then
        INTARRAY[PLACE] <-- -999
        return true
    else
        return false
    endif
end MARK
```

(a) Compare the efficiency of these two algorithms in execution time and memory requirements. A determination of their big-O time complexity is expected as part of your answer.

A queue is implemented as a linked list, \mathbf{g} is the element at the front of the queue:

(b) Describe how a new element can be enqueued to this structure.
[3 marks]
(c) Explain how this structure can be modified to use a circular linked list.
(d) Outline a method that could be used to count the number of items in the modified queue.
4. During the execution of a computer program, data held in primary memory is passed to the ALU and instructions are passed to the CU.
(a) Explain the functions of the accumulator, instruction register and program counter in this process.
(b) Outline one recent development in processor architecture that attempts to overcome the limitations of processing machine instructions one by one.

As part of the fetch-decode-execute cycle, the interrupt register is checked. An 8-bit register is shown below:

7	6	5	4	3		2	
0	1	1	0	1	1	0	1

The most significant bit holds the highest priority interrupt.
(c) State the hexadecimal representation of this register.
(d) Explain how a byte such as hexadecimal 80 can be used to check the status of the most significant bit.
(e) Buffers are used with peripheral devices. In some situations they may become full.
(i) Outline why buffers are used.
(ii) Outline one way that the system would deal with a full buffer.
[2 marks]
5. A data processing company uses a mainframe computer to prepare mobile phone bills. When a new customer is added the data is put onto a tape file. This tape is then sorted by customer ID order and used to update the customer master file which is held on disk, also in customer ID order.
(a) State one error that can occur when the master file is updated (not including file corruption or programming errors).
(b) Outline one reason why the master file is held on disk.

The company takes over another large company.
(c) Outline two problems that may occur when combining the two companies' customer files.
(d) Explain the process of merging together two sorted customer files.

