

COMPUTER SCIENCE HIGHER LEVEL PAPER 2

Wednesday 20 November 2002 (morning)

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.

1. A small shop stocks drinks and other items for sale. Details of the items are held in a stock file with the following record structure:

```
newtype ITEM record
CODE integer
DESCRIPTION string
PRICE real
STOCK integer
REORDER integer
endrecord
```

```
declare DATA is ITEM file
```

Records are held in the DATA file in sequential order of CODE which is a 5-digit integer. The following algorithm conducts an iterative binary search of the DATA file.

```
procedure BINARYSEARCH (val WANTED integer,
                      val SIZE integer,
                      ref FOUND boolean,
                      ref PLACE integer)
// FOUND returns true if the WANTED code is in the file
// PLACE returns its location in the file DATA
// The first component of DATA is numbered 0
  declare MIDPOINT, LOW, HIGH, CODE integer
  declare CURRENT is ITEM
  FOUND <-- false
  LOW <-- 0
  HIGH<-- SIZE - 1
  while (HIGH >= LOW) and (not FOUND) do
     MIDPOINT <-- (LOW + HIGH) div 2
     moveto (DATA, MIDPOINT)
     input(DATA) CURRENT
     if CURRENT.CODE > WANTED then
        HIGH <-- MIDPOINT - 1
     elsif CURRENT.CODE < WANTED then</pre>
           LOW <-- MIDPOINT + 1
     else
           FOUND <-- true
     endif
  endwhile
  PLACE <-- MIDPOINT
```

```
endprocedure BINARYSEARCH
```

(This question continues on the following page)

(Question 1 continued)

(a)	Outline why the parameters FOUND and PLACE are <i>pass-by-reference</i> .	[2 marks]
(b)	Outline one difference between a <i>procedure</i> and a <i>function</i> .	[2 marks]
(c)	Outline one difference between <i>iterative</i> and <i>recursive</i> algorithms.	[2 marks]
(d)	Construct the algorithm which implements the binary search as a <i>recursive function</i> which returns the place of the wanted item in the file or -1 if the item is not found.	[10 marks]
(e)	Outline a Boolean condition that could be used to ensure that the CODE numbers all have 5 digits.	[2 marks]
(f)	Construct the algorithm which conducts a <i>linear (sequential)</i> search of the data file and outputs the following information for each product whose STOCK level is less than the REORDER level:	
	ITEM CODE DESCRIPTION SHORT (which equals REORDER minus STOCK)	
	The algorithm must also output the total value of the stock in the shop (that is the sum of STOCK*PRICE for every item).	[7 marks]

(This question continues on the following page)

(Question 1 continued)

The sales figures for each month are held in a 2D integer array SALES[500,13] with the following structure:

	1	2	3	4	5	6	7	8	9	10	11	12	13
1	10232	112	209	187	93	103	163	231	206	194	300	314	256
2	10343	13	15	32	22	34	33						
3	10344	324	504	342	564								
4	10356	53	43	34									
5	10412	2	3										
6	11342	12											
7	etc.												
500													

(all cells are filled with integer data)

The first column of the array contains the 5-digit ITEM number and the remaining columns contain the sales figures with column 2 being January sales, column 3 being February sales and so on.

(g) Construct the algorithm which outputs the following information for each product in the array:

ITEM CODE LOWEST (that is the lowest value of sales in the 12 months) [5 marks] This question requires the use of the Case Study.

2.	(a)	State one reason why the CT numbers are stored in 2 bytes even though only 12 bits are required for storage.	[2 marks]
	(b)	Outline one difference and one similarity between <i>parity checks</i> and <i>check sums</i> used to ensure <i>data integrity</i> .	[4 marks]
	(c)	Outline the meaning of the term handshaking.	[2 marks]
	(d)	Modern investigations use <i>digital modelling</i> and simulation in preference to physical models, made of plaster, for example. Explain two advantages and two disadvantages of <i>digital modelling</i> compared to <i>physical modelling</i> .	[8 marks]
	(e)	Outline any two ethical issues relating to the case study.	[4 marks]
	(f)	Outline any two precautions that a researcher should take to ensure that his or her username and password are not found out by <i>hackers</i> .	[4 marks]
	(g)	Explain one way in which the job of a researcher in this field might have changed since the introduction of CT.	[2 marks]
	(h)	Outline one advantage and one disadvantage of the <i>world-wide-web</i> as a medium for sharing scientific data such as the cranial reconstructions described in the case study.	[4 marks]

3. Consider the following two algorithms used to delete an integer value from an array:

```
function SHUFFLE(var PLACE integer,
                  ref INTARRAY integer array[1..SIZE]) result boolean
   if PLACE <= SIZE then</pre>
      for I <-- PLACE to (SIZE - 1) do
         INTARRAY[I] <-- INTARRAY[I+1]</pre>
      endfor
      return true
   else
      return false
   endif
end SHUFFLE
function MARK (var PLACE integer,
               ref INTARRAY integer array[1..SIZE]) result boolean
   if PLACE <= SIZE then</pre>
      INTARRAY[PLACE] <-- -999
      return true
   else
      return false
   endif
end MARK
```

(a) Compare the efficiency of these two algorithms in execution time and memory requirements. A determination of their big-O time complexity is expected as part of your answer.

[6 marks]

A queue is implemented as a linked list, **g** is the element at the front of the queue:

(b) E	bescribe how a new element can be <i>enqueued</i> to this structure.	[3 marks]
-------	--	-----------

- (c) Explain how this structure can be modified to use a *circular linked list.* [2 marks]
- (d) Outline a method that could be used to count the number of items in the modified queue. [4 marks]

- 4. During the execution of a computer program, data held in *primary memory* is passed to the ALU and instructions are passed to the CU.
 - (a) Explain the functions of the *accumulator*, *instruction register* and *program counter* in this process. [6 marks]
 - (b) Outline **one** recent development in processor architecture that attempts to overcome the limitations of processing machine instructions one by one. [2 marks]

As part of the *fetch-decode-execute cycle*, the *interrupt register* is checked. An 8-bit register is shown below:

7	6	5	4	3	2	1	0	_
0	1	1	0	1	1	0	1	

The most significant bit holds the highest priority interrupt.

(c)	State	e the hexadecimal representation of this register.	[1 mark]
(d)	Expl statu	[2 marks]	
(e)	Buff becc		
	(i)	Outline why <i>buffers</i> are used.	[2 marks]
	(ii)	Outline one way that the system would deal with a full <i>buffer</i> .	[2 marks]

5. A data processing company uses a mainframe computer to prepare mobile phone bills. When a new customer is added the data is put onto a tape file. This tape is then sorted by customer ID order and used to update the customer *master file* which is held on disk, also in customer ID order.

(a)	State one error that can occur when the <i>master file</i> is updated (not including file corruption or programming errors).	[1 mark]
(b)	Outline one reason why the <i>master file</i> is held on disk.	[2 marks]
The	company takes over another large company.	
(c)	Outline two problems that may occur when combining the two companies' customer files.	[4 marks]
(d)	Explain the process of merging together two sorted customer files.	[8 marks]