BACCALAURÉAT

MARKSCHEME

November 2000

COMPUTER SCIENCE

Higher Level

Paper 1

SECTION A

1. (Award [1 mark] for the idea that it (is hardware/software combination that) connects networks together; idea that it directs data to the appropriate path.)
2. (Award [1 mark] for temporary; and [1 mark] for store/memory.)
3. (a) (Award [1 mark] for the idea that it's a data-structure whose items are added to the rear of a queue/one end;
and [1 mark] that items are removed from the front/other end.)
Give [2 marks] for stating that it is a First-in, First-out structure (or Last-in, Last-out). Give NO marks for just stating FIFO structure!
DO NOT accept any facile comments about supermarket queues etc. - this is a Higher Level Computer Science exam!
(b) (Award [1 mark] for a valid application, and a second mark for an attempt at a valid description:)

- Jobs waiting to be executed by a computer, a new job is added to the end, computer executes next job from front;
- Keyboard buffer storing data whilst the processor is busy doing another task;
- Spooling output to a disk to await printing, new jobs added at the end, printer deals with jobs from front/accept idea as a print queue in general.

4. (Award [1 mark] for $O(n \log n))$
5. (a) Two (or more) different values can give the same result from the hash algorithm. [1 mark]
(b) (Award [1 mark] for a valid method, and a second mark for an attempt at a valid description:)

- Locate next free space and store data item there;
- Have an overflow area with a marker/pointer to it.

6. (Award [1 mark] for a correct stage, and a second mark for a correct elaboration, up to a maximum of [6 marks].)

- Systems analysis, an investigation which leads to a precise statement of the problem;
- Software/program design, a breakdown of the problem statement into its constituent parts from which coding can take place;
- installation/operation, the introduction of the system so that it can be used by the end-user;
- maintenance, where the system is checked for errors/improvements which will lead to another cycle.

7. (Award the marks as indicated below; up to [4 marks] max:)

- A function should return one value;
- which is returned by the function name/itself;
- parameters should not change/no 'side-effects';
- since this would mean more than one value is returned;
- so there is no need for pass-by-reference parameters;
- which can be changed;
- unlike pass-by-value parameters (which can't be altered);
- so pass-by-value parameters should be used;
- unless pass-by-reference parameters are used to save memory;
- and the values are not changed.

8. (Award up to [2 marks] for an outline of encapsulation and up to [2 marks] for an outline of polymorphism:)

Encapsulation: (Award [1 mark] for each of the points indicated below; up to [2 marks] max:)

- the combination of data and the operations that act on the data;
- into a single unit/object;
- allowing information/data hiding.

Polymorphism: (Award [1 mark] for each of the points indicated below; up to [2 marks] max:)

- The same operation can be applied to different objects;
- and the object behaves appropriately/'differently’;
- allowing simpler/generic code.

9. (Award [1 mark] for identifying a valid benefit, and up to [2 marks] for a clear explanation, for two benefits, giving [6 marks] max:)

- many users can access the data at the same time:
- this means that users can view the data when they want;
- without having to wait if someone else is using it;
- without having to move to a central file/computer;
- because they can access it from their own terminals.
(Note the above can be separated into two points, i.e. 'many users' and 'many terminals/locations' - this is acceptable for two separate advantages.)
- data integrity is easier to maintain:
- with only one copy of the data, rather than many copies;
- any changes are recorded in the central database;
- meaning that there are not separate files with different data as individual ones are updated.

10.

A	B	AxorB	[1 mark]
0	0	0	
0	1	1	[1 mark]
1	0	1	[1 mark]
1	1	0	[1 mark]
$=\overline{\mathrm{A}} \cdot \mathrm{B}+\mathrm{A} \cdot \overline{\mathrm{B}}$			[1 mark]
$(\mathrm{A}+\mathrm{B}) \cdot(\overline{\mathrm{A}} \mathrm{B})$			

11. (Award [1 mark] for identifying a suitable advantage other than speed-related, and [1 mark] for a further correct elaboration, and [1 mark] for identifying a suitable disadvantage, and [1 mark] for a further correct elaboration, up to a max of [4 marks].)

ADVANTAGES:

- Security:
- email will only deliver to the specified address (whereas normal mail could be opened by another person); or
- email addresses usually require a password to access it (whereas physical mail can be opened by another person);
- Economy:
- in most countries the cost of a local call is cheaper than the international mail rate;
- Convenience:
- the mail can be sent without having to move from the computer (unlike a letter which needs to be packaged, weighed, correct stamps bought etc.);
Do NOT accept:
- Multiple sendings: the same email can be sent to a group of people. (So can a document, i.e. photocopy it!) This idea CAN be accepted IF the candidate explains that it would save the inconvenience of photocopying etc., because then it's the previous point!
- Attach and send replies etc. because this can be done with physical documents; i.e. don't accept tasks that are equally valid with paper documents.

DISADVANTAGES:

- The original document is not received:
- this may be required in some cases (e.g. legal contracts);
- No physical items can be included:
- additional articles cannot be included such as a product sample (or even separate handwritten notes etc. - see next point);
- Personalised notes may be lost:
- although notes etc. can be scanned and so the original layout/format/colour maintained, this is more difficult than simply enclosing original notes/letters and so personal comments/intimations may be lost. (Accept the more concrete "this cannot be done" from a candidate, as well as the correct "more difficult").

SECTION B

12. (a) Boolean. [1 mark]
(b)

\left.| HALF | MIDDLE | POSITION | SAME | COUNT | |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 3 | 4 | 1 | true | 1 | |
| | | | 2 | false | |
| [1 mark] | | | | | |
| | | | 3 | true | 2 |$\right]$ [1 mark]

(c) (Award [2 marks] for a complete explanation, [1 mark] for a partial answer.)

Complete answers:
It counts the number of values that are equal [1 mark] at equivalent (opposite) locations from the centre [1 mark].

It tests matching entries from the centre [1 mark], counting how many are equal [1 mark].
It tests symmetrical/balancing locations [1 mark], seeing how many are equal [1 mark].
It counts the number of entries which are the same [1 mark] mirrored about the centre/middle (of the array) [1 mark] etc.

Partial answers:

It counts how many entries make it a palindrome [1 mark].
It tests if it is a palindrome [1 mark].
It counts if the ends are equal [1 mark].
It looks as if it is a mirror [1 mark] etc.
(d) (Award marks as follows:)

- [1 mark] for stating that count changes within the procedure;
- [1 mark] for the idea that it needs to be passed back to (or 'used' by) the calling routine/main program.
(e) (Award marks as follows, up to a maximum of [2 marks]:)
- [1 mark] for identifying that a function returns a single value;
- [1 mark] for stating that since this is what the algorithm does it is appropriate;
- [1 mark] since there is only one 'out' parameter;
- [1 mark] and the others are 'in' parameters;
- [1 mark] the value can be passed back via a function name.
(Check other apparently correct answers with your team leader.)

13. (a)

F	S	B	N
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

[1 mark] for all 8 inputs.
[3 marks] for all N correct (subtract [1 mark] for each incorrect value, do not award negative marks!)
(b) $\mathrm{N}=\overline{\mathrm{F} S B}+\mathrm{F} \overline{\mathrm{S}} \overline{\mathrm{B}}+\mathrm{FS} \overline{\mathrm{B}}+\mathrm{FSB}$ [1 mark]
(or $\mathrm{SB}+\mathrm{FS}+\mathrm{FB}$)
(c) Using a Karnaugh Map:

$\mathrm{N}=\mathrm{SB}+\mathrm{F} \overline{\mathrm{B}}$
By Boolean Algebra:

$$
\begin{aligned}
& \overline{\mathrm{F} S B}+\mathrm{F} \overline{\mathrm{~S}} \overline{\mathrm{~B}}+\mathrm{FS} \overline{\mathrm{~B}}+\mathrm{FSB} \\
& \mathrm{SB}(\overline{\mathrm{~F}}+\mathrm{F})+\mathrm{F} \overline{\mathrm{~B}}(\overline{\mathrm{~S}}+\mathrm{S}) \\
& =\mathrm{SB}+\mathrm{F} \overline{\mathrm{~B}}
\end{aligned}
$$

[1 mark] for any simplification by 1 level.
[2 marks] for simplifying by 2 or more levels.
[3 marks] if final solution uses 4 gates (if only final solution is given and correct, candidate gets all [3 marks]).
N.B: if candidate does not attempt this part, but gave answer as $\mathrm{FS}+\mathrm{F} \overline{\mathrm{S}} \overline{\mathrm{B}}+\overline{\mathrm{FS}} \mathrm{B}$ in part (b), give [1 mark] here (for implicit simplification by 1 level).
(d) The number of bits available is not enough for answer [1 mark] so MSB becomes 1 indicating a negative value [1 mark].
(If candidate shows calculation and a 1 ends up in MSB give [1 mark], with explanation gets second mark.)
14. (a) (i) (Award the marks as follows:)

As the year changed to 2000, the date (Now) would have been stored as $00 ;$ [1 mark] so subtracting a value from it would have given a negative value/wrong value [1 mark]

Do NOT accept 'millennium bug' without an explanation.
(ii) - (Award [2 marks] for a clear description ([1 mark] for a partial answer):)

The new algorithm will work for any account that is not open for more than 99 years. There is no time limit (i.e. it does not stop functioning in 2100).

- (Award a further [1 mark] for showing a correct calculation, and the remaining second mark for explaining how an account 100 years earlier is wrong; OR [2 marks] for explaining how an account opened over 100 years ago is wrong:)
- If NOW was 2101 (i.e. 01) and an account was opened in 2099 (i.e. 99) answer should be 2 . Calculation gives $01+100-99=2$, correct. But same answer would be given for 1999 instead of 102, i.e. wrong.
OR
- If an account was opened in 1950, and Now is 2051. The calculation would give 51-50 which gives 1 year, instead of 101 .
(b) (Award [1 mark] for a valid point regarding system documentation, and a second mark for an elaboration, for two points, up to [4 marks] max:)
- Structure diagrams/data flow diagrams etc. [1 mark] show the logic of the algorithm, so it would be easy to detect where the change is needed. [1 mark]
- An annotated program listing/description [1 mark] would guide a programmer to where the required calculation is located to be altered. [1 mark]

15. (a) (Award [2 marks] for a complete answer, [1 mark] for a partial answer.)

If one sensor malfunctions/breaks down [1 mark] it will be detected by comparing with the other two [1 mark] (i.e. two will give one reading, the broken one a different reading - this would get the explanatory mark).
"In case one breaks down" gets [1 mark].
"In case it breaks down" gets [0 marks].
DO NOT accept for taking readings at different/three places. (The question states they are at one place.)
(b) [1 mark] for:

Analog(ue) to digital conversion. (Do not accept just ADC.)
(c) (Award [1 mark] for any of the following points, up to [3 marks] max:)

- Each sensor is monitored/read/accessed;
- in turn/on a regular basis;
- The (master) processor requests data in a "round-robin" approach;
- Data is stored from each sensor (for processing);

Accept (for full marks):

- Each sensor stores data in a(n input) buffer/after ADC data is stored in a buffer;
- The processor compares the three readings for equality before starting polling again.
(d) (Award [1 mark] for each point where a comparison is valid, and a further mark for an elaboration, for two separate points, giving a maximum of [4 marks]:)
- Speed of data flow [1 mark]
- Because bits are sent simultaneously/at the same time in parallel, it is faster than serial where they are sent one after the other. [1 mark]
"Parallel connection is faster than serial connection" is worth [1 mark] for the valid comparison point, but no more.
"Parallel is faster because the bits are sent at the same time" is worth [1 mark].
"Parallel is faster because the bits are sent at the same time but serial is one after the other" is worth [2 marks].
- Links/lines/'cables' [1 mark]

Only one line is required in serial transmission (with bits sent consecutively) where many lines are required in parallel (due to simultaneous bit transmission). [1 mark]
16. (a) (Award [1 mark] for any of the following points up to [3 marks] max:)
(NOTE: The question asks for WHY defragmentation is required NOT how!)

- As data/files are deleted and added;
- contiguous data is not physically next to each other on the disk;
- hence the disk head has to move much more to retrieve data;
- which slows down the (reading) process.

DO NOT accept answers relating to movement of records within files.
(b) (Award [3 marks] for a clear description of timesharing as follows (just stating 'timesharing' or 'multitasking' gets [1 mark]), up to [3 marks] max:)

- Using timesharing/multitasking [1 mark];
- processor time is divided between the two programs [1 mark];
- each program is given a set timeslice/period of time [1 mark];
- after which the other program is given a timeslice, and this process is repeated [1 mark];
- the switching between programs occurs so fast [1 mark] that to the user it appears that both are running simultaneously/at the same time.
(c) (Award [1 mark] for each of the following points, up to [4 marks] max;)
- Each email message has the address of the receiver (and of the sender);
- The message is sent around the LAN (in 'packet/s');
- The server stores the message;
- and sends a message to the secretary that email has been received;

