

Chemistry Standard level Paper 1

Thursday 14 May 2015 (afternoon)

45 minutes

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
- The maximum mark for this examination paper is [30 marks].

Φ
Q
Tak
່ບ
ij
ŏ
j
Pe
Ð
2
F

							r		
0	2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.80	54 Xe 131.30	86 Rn (222)		·	
7		9 F 19.00	17 CI 35.45	35 Br 79.90	53 I 126.90	85 At (210)		71 Lu 174.97	103 Lr (260)
9		8 0 16.00	16 S 32.06	34 Se 78.96	52 Te 127.60	84 Po (210)		70 Yb 173.04	102 No (259)
S		7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.75	83 Bi 208.98		69 Tm 168.93	101 Md (258)
4		6 C 12.01	14 Si 28.09	32 Ge 72.59	50 Sn 118.69	82 Pb 207.19		68 Er 167.26	100 Fm (257)
ი		5 B 10.81	13 Al 26.98	31 Ga 69.72	49 In 114.82	81 TI 204.37		67 Ho 164.93	99 Es (254)
	·			30 Zn 65.37	48 Cd 112.40	80 Hg 200.59		66 Dy 162.50	98 Cf (251)
				29 Cu 63.55	47 Ag 107.87	79 Au 196.97		65 Tb 158.92	97 Bk (247)
				28 Ni 58.71	46 Pd 106.42	78 Pt 195.09		64 Gd 157.25	96 Cm (247)
				27 Co 58.93	45 Rh 102.91	77 Ir 192.22		63 Eu 151.96	95 Am (243)
				26 Fe 55.85	44 Ru 101.07	76 Os 190.21		62 Sm 150.35	94 Pu (242)
	_			25 Mn 54.94	43 Tc 98.91	75 Re 186.21		61 Pm 146.92	93 Np (237)
		lass		24 Cr 52.00	42 Mo 95.94	74 W 183.85		60 Nd 144.24	92 U 238.03
	Atomic number	Element Relative atomic mass		23 V 50.94	41 Nb 92.91	73 Ta 180.95		59 Pr 140.91	91 Pa 231.04
	Atom	Relative		22 Ti 47.90	40 Zr 91.22	72 Hf 178.49		58 Ce 140.12	90 Th 232.04
				21 Sc 44.96	39 ★ 88.91	57† La 138.91	89‡ Ac (227)	+	++
2		4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.34	88 Ra (226)		
-	1.01 1.01	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)		
I			I			I	J		

- 1. What is the total number of protons and electrons in one mole of hydrogen gas?
 - A. 2
 - B. 4
 - $C. \qquad 1.2\times 10^{24}$
 - $D. \qquad 2.4\times 10^{24}$
- **2.** A hydrocarbon contains 85.7% carbon by mass. What is the empirical formula of the hydrocarbon?
 - A. C_2H_3
 - B. CH₂
 - $\mathsf{C}. \quad \mathsf{C}_2\mathsf{H}_5$
 - D. CH₃
- 3. What is the sum of all coefficients for the combustion of one mole of propane?

 $\underline{\qquad} C_3H_8(g) + \underline{\qquad} O_2(g) \rightarrow \underline{\qquad} CO_2(g) + \underline{\qquad} H_2O(l)$

- A. 8
- B. 12
- C. 13
- D. 15

4. A gas with a molar mass (*M*) of $44 \text{ g} \text{ mol}^{-1}$ occupies a volume of $2.00 \times 10^3 \text{ cm}^3$ at a pressure of $1.01 \times 10^5 \text{ Pa}$ and a temperature of 25 °C. Which expression is correct for the calculation of the mass of the gas, ing? ($R = 8.31 \text{ J} \text{ K}^{-1} \text{ mol}^{-1}$)

A.	$44 \times 1.01 \times 10^{5} \times 2.00 \times 10^{-3}$
Л.	8.31×298

B. $\frac{44 \times 1.01 \times 10^5 \times 2.00 \times 10^3}{8.31 \times 25}$

C.
$$\frac{1.01 \times 10^5 \times 2.00 \times 10^{-3}}{44 \times 8.31 \times 298}$$

D.
$$\frac{44 \times 1.01 \times 10^5 \times 2.00 \times 10^3}{8.31 \times 298}$$

- 5. Which statement is correct for the ion ${}^{9}_{4}Be^{2+}$?
 - A. The ion contains 15 subatomic particles in the nucleus.
 - B. The ion contains more protons than neutrons in the nucleus.
 - C. The ion has an electron arrangement of 2,2.
 - D. Most of the total volume of the ion is empty space.
- 6. Which ion will be deflected most in a mass spectrometer?
 - A. ¹⁶O⁺
 - B. ¹⁶O²⁺
 - C. ¹⁸O⁺
 - D. ¹⁸O²⁺
- 7. Which statement is correct for the halogens $(F \rightarrow I)$?
 - A. Electronegativity decreases from fluorine to iodine.
 - B. Atomic radius decreases from fluorine to iodine.
 - C. First ionization energy increases from fluorine to iodine.
 - D. Reactivity of the element with sodium increases from fluorine to iodine.

	Nature of bonding	Acidic or basic behaviour
A.	covalent	acidic
В.	ionic	basic
C.	covalent	basic
D.	ionic	acidic

8. Which combination of properties best describes sodium oxide, Na₂O?

- 9. The formula of gallium phosphate is GaPO₄. What is the correct formula of gallium sulfate?
 - A. GaSO₄
 - B. GaS
 - C. $Ga_2(SO_4)_3$
 - D. Ga_2S_3
- 10. Which species contain a dative covalent (coordination or coordinate) bond?
 - I. Carbon monoxide, CO
 - II. Ammonia, NH₃
 - III. Oxonium ion, H_3O^+
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

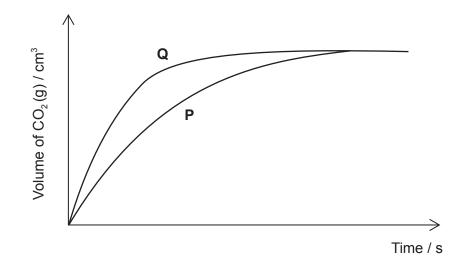
11. Which combination of shape and bond angle best describes a molecule of sulfur dioxide, SO₂?

	Shape	Bond angle
A.	linear	180 [°]
В.	tetrahedral	105 [°]
C.	bent (v-shaped)	119 [°]
D.	trigonal planar	120 [°]

- 12. Which statement is correct about carbon-oxygen bond lengths?
 - A. The C–O bond lengths are equal in propanoic acid, C_2H_5COOH .
 - B. The C–O bond length in carbon dioxide, CO_2 , is longer than the C–O bond length in methanol, CH_3OH .
 - C. The C–O bond length in carbon dioxide, CO₂, is longer than the C–O bond length in carbon monoxide, CO.
 - D. The C–O bond lengths are equal in ethyl ethanoate, $CH_3COOC_2H_5$.
- **13.** Which compound has hydrogen bonds between its molecules?
 - A. CH₃COCH₃
 - B. CH₃CHO
 - $\mathsf{C}.\quad \mathsf{C}\mathsf{H}_3\mathsf{C}\mathsf{H}_2\mathsf{F}$
 - $\mathsf{D}. \quad \mathsf{CH}_3\mathsf{CH}_2\mathsf{NH}_2$
- 14. Which combination is correct for the standard enthalpy change of neutralization?

	Process	Sign of ∆ <i>H</i> ⊖
A.	exothermic	negative
B.	exothermic	positive
C.	endothermic	negative
D.	endothermic	positive

15. When four moles of aluminium and four moles of iron combine with oxygen to form their oxides, the enthalpy changes are –3338 kJ and –1644 kJ respectively.


 $\begin{aligned} 4\text{Al}(s) + 3\text{O}_2(g) &\rightarrow 2\text{Al}_2\text{O}_3(s) & \Delta H = -3338\,\text{kJ} \\ 4\text{Fe}(s) + 3\text{O}_2(g) &\rightarrow 2\text{Fe}_2\text{O}_3(s) & \Delta H = -1644\,\text{kJ} \end{aligned}$

What is the enthalpy change, in kJ, for the reduction of one mole of iron(III) oxide by aluminium?

$$Fe_2O_3(s) + 2Al(s) \rightarrow 2Fe(s) + Al_2O_3(s)$$

- A. +1694
- B. +847
- C. -847
- D. -1694
- 16. Which enthalpy changes can be calculated using only bond enthalpy data?
 - I. $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
 - II. $C_2H_5OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(g)$
 - III. $CH_4(g) + Cl_2(g) \rightarrow CH_3Cl(g) + HCl(g)$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 17. Which is a correct unit for expressing the rate of a reaction?
 - A. $mol dm^{-3} s^{-1}$
 - B. mol dm⁻³ s
 - C. mols
 - D. $mol^{-1}dm^3s^{-1}$

100 cm³ of a 1.00 mol dm⁻³ solution of hydrochloric acid is added to 2.00 g of small pieces of calcium carbonate at 20 °C. The volume of carbon dioxide produced against time is plotted to give curve P.

Which change will produce curve **Q**, given that calcium carbonate is always the limiting reagent?

- A. Increasing the volume of the hydrochloric acid to 200 cm³
- B. Increasing the mass of calcium carbonate to 4.00 g
- C. Increasing the concentration of the hydrochloric acid to 2.00 mol dm⁻³
- D. Replacing the 2.00 g of small pieces of calcium carbonate with 2.00 g of larger pieces of calcium carbonate
- **19.** What is the equilibrium constant expression, K_c , for the formation of hydrogen iodide from its elements?

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

A.
$$K_{c} = \frac{[HI]^{2}}{[H_{2}] \times [I_{2}]}$$

B. $K_{c} = \frac{[2HI]}{[H_{2}] + [I_{2}]}$
C. $K_{c} = \frac{2[HI]^{2}}{[H_{2}] + [I_{2}]}$
D. $K_{c} = \frac{[2HI]}{[H_{2}] \times [I_{2}]}$

20. Which combination of temperature and pressure will give the greatest yield of sulfur trioxide?

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ Δh

 $\Delta H = -196 \, \text{kJ}$

	Temperature	Pressure
A.	high	low
В.	low	high
C.	high	high
D.	low	low

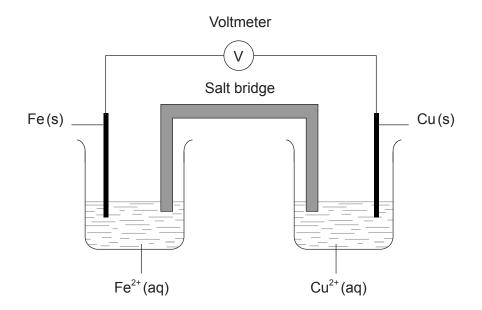
- 21. Which species cannot function as a Lewis acid?
 - A. BF₃
 - B. AlCl₃
 - $\mathsf{C}.\quad \mathsf{CCl}_4$
 - $\mathsf{D}. \quad \mathsf{H}^{\scriptscriptstyle +}$
- **22.** 10.0 cm³ of a solution of a strong acid with a pH of 3 is added to a volumetric flask and the total volume is made up to 1.00 dm³ by adding distilled water. The resulting solution is then thoroughly mixed.

What is the pH of the diluted solution?

- A. 1
- B. 2
- C. 4
- D. 5

23.	What are the oxidation states of each element in K_2CrO_4 ?	
-----	---	--

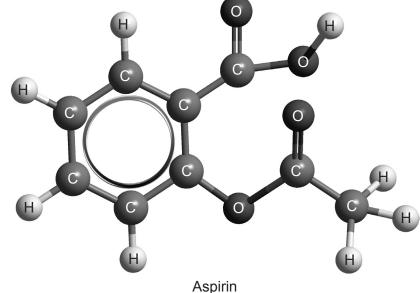
	Potassium	Chromium	Oxygen
A.	+1	+6	-2
В.	-1	+6	-2
C.	+1	-6	+2
D.	-1	-6	+2


24. What is the coefficient for I^- when the following equation is balanced using the smallest possible whole numbers?

$$IO_3^{-}(aq) + ___I^{-}(aq) + ___H^{+}(aq) \rightarrow ___I_2(aq) + ___H_2O(l)$$

- A. 1
- В. 2
- C. 3
- D. 5

25. A voltaic cell is made by connecting a copper half-cell, $Cu(s)|Cu^{2+}(aq)$, to an iron half-cell Fe(s)|Fe²⁺(aq).


– 11 –

Which combination correctly identifies the positive electrode and the species being oxidized?

	Positive electrode	Species oxidized
A.	copper	iron
В.	copper	copper(II) ions
C.	iron	copper
D.	iron	copper(II) ions

- **26.** Applying IUPAC rules, what is the name of $CH_3CH(CH_3)CH_2COOH?$
 - A. 2,3-dimethylpropanoic acid
 - B. Pentanoic acid
 - C. 3-methylbutanoic acid
 - D. 2-methylbutanoic acid

A. Hydroxyl (alcohol) and ester

27.

- B. Carboxyl (carboxylic acid) and ester
- C. Carboxyl (carboxylic acid) and carbonyl (ketone)
- D. Hydroxyl (alcohol) and carbonyl (ketone)
- **28.** Which statements are correct for the reaction of ethene with bromine in the absence of ultraviolet light?
 - I. It is an addition reaction.
 - II. The organic product is colourless.
 - III. The organic product is saturated.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

29. Which combination best describes the substitution reaction between bromoethane and dilute aqueous sodium hydroxide?

Nucleophile	Mechanism
OH⁻	S _N 1
OH⁻	S _N 2
CH ₃ CH ₂ Br	S _N 1
CH ₃ CH ₂ Br	S _N 2

Α.

Β.

C.

D.

- **30.** What is the best way to minimize the random uncertainty when titrating an acid of unknown strength against a standard solution of sodium hydroxide (*ie* one of known concentration)?
 - A. First standardize the sodium hydroxide solution against a standard solution of a different acid.
 - B. Use a pH meter rather than an indicator to determine the equivalence point.
 - C. Keep your eye at the same height as the meniscus when reading the burette.
 - D. Repeat the titration several times.

 $CH_{3}CH_{2}Br + OH^{-} \rightarrow CH_{3}CH_{2}OH + Br^{-}$