

Chemistry Standard level Paper 1

Thursday 14 May 2015 (afternoon)

45 minutes

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
- The maximum mark for this examination paper is [30 marks].

Φ
Q
Tak
່ບ
ij
ŏ
j
Pe
Ð
2
F

	· · · · · · · · · · · · · · · · · · ·						r		
0	2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.80	54 Xe 131.30	86 Rn (222)		·	
7		9 F 19.00	17 CI 35.45	35 Br 79.90	53 I 126.90	85 At (210)		71 Lu 174.97	103 Lr (260)
9		8 0 16.00	16 S 32.06	34 Se 78.96	52 Te 127.60	84 Po (210)		70 Yb 173.04	102 No (259)
S		7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.75	83 Bi 208.98		69 Tm 168.93	101 Md (258)
4		6 C 12.01	14 Si 28.09	32 Ge 72.59	50 Sn 118.69	82 Pb 207.19		68 Er 167.26	100 Fm (257)
ი		5 B 10.81	13 Al 26.98	31 Ga 69.72	49 In 114.82	81 TI 204.37		67 Ho 164.93	99 Es (254)
	·			30 Zn 65.37	48 Cd 112.40	80 Hg 200.59		66 Dy 162.50	98 Cf (251)
				29 Cu 63.55	47 Ag 107.87	79 Au 196.97		65 Tb 158.92	97 Bk (247)
				28 Ni 58.71	46 Pd 106.42	78 Pt 195.09		64 Gd 157.25	96 Cm (247)
				27 Co 58.93	45 Rh 102.91	77 Ir 192.22		63 Eu 151.96	95 Am (243)
				26 Fe 55.85	44 Ru 101.07	76 Os 190.21		62 Sm 150.35	94 Pu (242)
	_			25 Mn 54.94	43 Tc 98.91	75 Re 186.21		61 Pm 146.92	93 Np (237)
	- 	lass		24 Cr 52.00	42 Mo 95.94	74 W 183.85		60 Nd 144.24	92 U 238.03
	Atomic number	Element Relative atomic mass		23 V 50.94	41 Nb 92.91	73 Ta 180.95		59 Pr 140.91	91 Pa 231.04
	Atom	Relative		22 Ti 47.90	40 Zr 91.22	72 Hf 178.49		58 Ce 140.12	90 Th 232.04
				21 Sc 44.96	39 ★ 88.91	57† La 138.91	89‡ Ac (227)	+	++
2		4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.34	88 Ra (226)		
-	1.01 1.01	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)		
1					'				

1. Combustion of ethanol takes place according to the following unbalanced equation.

 $\underline{\qquad} C_2H_5OH(l) + \underline{\qquad} O_2(g) \rightarrow \underline{\qquad} CO_2(g) + \underline{\qquad} H_2O(l)$

What is the mole ratio of ethanol to oxygen in the balanced equation?

- A. 1:1
- B. 2:1
- C. 1:3
- D. 2:7
- 2. Which sample contains the largest amount, in mol, of oxygen atoms?
 - A. 0.20 mol P_2O_5
 - B. 0.30 mol O₃
 - C. $0.40 \text{ mol CH}_3\text{COOH}$
 - D. 0.80 mol H₂O
- 3. Which compound has the highest percentage of carbon by mass?
 - A. CH₄
 - B. C₂H₄
 - C. C₄H₁₀
 - $\mathsf{D}. \quad \mathsf{C}_{6}\mathsf{H}_{6}$
- 4. Which solution contains the biggest amount, in mol, of chloride ions?
 - A. $20 \text{ cm}^3 \text{ of } 0.50 \text{ mol } \text{dm}^{-3} \text{NH}_4 \text{Cl}$
 - B. $60 \text{ cm}^3 \text{ of } 0.20 \text{ mol } \text{dm}^{-3} \text{MgCl}_2$
 - C. $70 \text{ cm}^3 \text{ of } 0.30 \text{ mol } \text{dm}^{-3} \text{NaCl}$
 - D. $100 \text{ cm}^3 \text{ of } 0.30 \text{ mol } \text{dm}^{-3} \text{ClCH}_2 \text{COOH}$

	Number of electrons	Number of neutrons	Mass number	
Α.	same	same	same	
В.	same	same	different	
C.	same	different	different	
D.	different	different	different	

5. Which statement about the isotopes of nitrogen is correct?

6. Ultraviolet radiation has a shorter wavelength than infrared radiation. How does the frequency and energy of ultraviolet radiation compare with infrared radiation?

	Frequency	Energy	
A.	higher	higher	
В.	higher	lower	
C.	lower	higher	
D.	lower	lower	

- 7. What is the total number of valence electrons in $CH_3COO^-?$
 - A. 16
 - B. 22
 - C. 23
 - D. 24
- 8. What is the definition of the term *first ionization energy*?
 - A. The energy released when one mole of electrons is removed from one mole of gaseous atoms.
 - B. The energy required to remove one mole of electrons from one mole of gaseous atoms.
 - C. The energy released when one mole of gaseous atoms gains one mole of electrons.
 - D. The energy required to add one mole of electrons to one mole of gaseous atoms.

9. What describes the structure of silicon and silicon dioxide?

		Silicon	Silicon Dioxide		
	Shape	Si–Si bonds per silicon atom	Shape	Si–O bonds per silicon atom	
A.	planar	4	planar	4	
B.	linear	2	linear	2	
C.	tetrahedral	4	linear	2	
D.	tetrahedral	4	tetrahedral	4	

- 10. Which molecules react to form a dative covalent (coordinate) bond?
 - A. CH_4 and NH_3
 - B. C_2H_2 and Cl_2
 - C. NH_3 and HF
 - D. Cl_2 and HF
- **11.** What describes the relationship between diamond, graphite and C_{60} fullerene?
 - A. Allotropes
 - B. Isomers
 - C. Isotopes
 - D. Polymers
- 12. Which forces are present between molecules of carbon dioxide in the solid state?
 - A. Permanent dipole-permanent dipole interactions
 - B. Temporary dipole-induced dipole interactions (London/dispersion forces)
 - C. Covalent bonding
 - D. Ionic bonding

13. The following compounds have similar molar masses:

 $CH_{3}CH_{2}COOH, CH_{3}CH_{2}CH_{2}CH_{2}OH and CH_{3}CH_{2}CH_{2}CH_{2}CH_{3}$

What is the order of **increasing** boiling points?

- A. $CH_3CH_2CH_2CH_2OH < CH_3CH_2COOH < CH_3CH_2CH_2CH_2CH_3$
- $\mathsf{B}. \qquad \mathsf{CH_3CH_2COOH} < \mathsf{CH_3CH_2CH_2CH_3} < \mathsf{CH_3CH_2CH_2CH_2OH}$
- $\mathsf{C}. \qquad \mathsf{C}\mathsf{H}_3\mathsf{C}\mathsf{H}_2\mathsf{C}\mathsf{O}\mathsf{O}\mathsf{H} < \mathsf{C}\mathsf{H}_3\mathsf{C}\mathsf{H}_2\mathsf{C}\mathsf{H}_2\mathsf{C}\mathsf{H}_2\mathsf{O}\mathsf{H} < \mathsf{C}\mathsf{H}_3\mathsf{C}\mathsf{H}_2\mathsf{C}\mathsf{H}_2\mathsf{C}\mathsf{H}_2\mathsf{C}\mathsf{H}_3$
- $\mathsf{D}. \qquad \mathsf{CH_3CH_2CH_2CH_3} < \mathsf{CH_3CH_2CH_2CH_2OH} < \mathsf{CH_3CH_2COOH}$
- **14.** Which processes are exothermic?
 - I. $CH_3COOH(aq) + NaOH(aq) \rightarrow CH_3COONa(aq) + H_2O(l)$
 - II. $2C(s) + O_2(g) \rightarrow 2CO(g)$
 - III. $C(s) + O_2(g) \rightarrow CO_2(g)$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- **15.** The heat change in a neutralization reaction can be determined by mixing equal volumes of HCl (aq) and NaOH (aq) of the same concentration in a glass beaker. The maximum temperature change is recorded using an alcohol thermometer.

What is the biggest source of error in this experiment?

- A. Heat absorbed by the glass thermometer
- B. Random error in the thermometer reading
- C. Heat loss to the surroundings
- D. Systematic error in measuring the volumes of HCl (aq) and NaOH (aq) using burettes

- 16. Which equation corresponds to the bond enthalpy of the H–I bond?
 - A. $HI(g) \rightarrow \frac{1}{2}H_2(g) + \frac{1}{2}I_2(g)$
 - B. $HI(g) \rightarrow \frac{1}{2}H_2(g) + \frac{1}{2}I_2(s)$
 - C. $HI(g) \rightarrow H^+(g) + I^-(g)$
 - D. $HI(g) \rightarrow H(g) + I(g)$

17. Which variable is best to use when determining the rate of decomposition of hydrogen peroxide?

$$2H_2O_2(l) \rightarrow 2H_2O(l) + O_2(g)$$

- A. Volume of solution
- B. Volume of gas
- C. pH of solution
- D. Conductivity of solution
- **18.** Nitrogen gas reacts with hydrogen gas according to the following equation.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -92 kJ$

Why is the rate of reaction slow at room temperature?

- A. The activation energy of the forward reaction is high.
- B. The activation energy of the forward reaction is low.
- C. The equilibrium constant is very small.
- D. The rate of the reverse reaction is greater than the rate of the forward reaction.
- 19. Which change will favour the reverse reaction in the equilibrium?

$$2\mathrm{CrO}_{4}^{2-}(\mathrm{aq}) + 2\mathrm{H}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{Cr}_{2}\mathrm{O}_{7}^{2-}(\mathrm{aq}) + \mathrm{H}_{2}\mathrm{O}(\mathrm{l}) \qquad \Delta H = -42\,\mathrm{kJ}$$

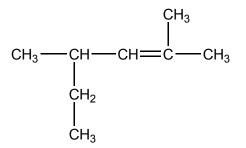
A. Adding $OH^{-}(aq)$

- B. Adding $H^{+}(aq)$
- C. Increasing the concentration of $CrO_4^{2-}(aq)$
- D. Decreasing the temperature of the solution

20. Carbon monoxide and water react together in the industrial production of hydrogen gas.

$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$

What is the impact of decreasing the volume of the equilibrium mixture at a constant temperature?


- A. The amount of $H_2(g)$ remains the same but its concentration decreases.
- B. The forward reaction is favoured.
- C. The reverse reaction is favoured.
- D. The value of K_c remains unchanged.
- 21. Which gas in the atmosphere causes the pH of unpolluted rain to be approximately 6?
 - A. Carbon dioxide
 - B. Sulfur dioxide
 - C. Oxygen
 - D. Nitrogen
- 22. Which compound is a strong acid?
 - A. NH₃
 - B. HNO₃
 - C. H_2CO_3
 - D. CH₃COOH
- 23. Which represents a redox reaction?
 - A. $\operatorname{NaH}(s) + \operatorname{H}_2O(l) \rightarrow \operatorname{NaOH}(aq) + \operatorname{H}_2(g)$
 - B. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
 - $C. \qquad CuCl_2(aq) + K_2S(aq) \rightarrow CuS(s) + 2KCl(aq)$
 - D. $HCl(aq) + NH_3(aq) \rightarrow NH_4^+Cl^-(aq)$

- **24.** Which species can oxidize ethanol to ethanoic acid?
 - A. I^-
 - B. Fe
 - C. 0²⁻
 - D. Acidified $K_2Cr_2O_7$
- **25.** Two half-cells are connected via a salt bridge to make a voltaic cell. Which statement about this cell is correct?
 - A. Oxidation occurs at the positive electrode (cathode).
 - B. It is also known as an electrolytic cell.
 - C. Ions flow through the salt bridge.
 - D. It requires a power supply to operate.
- 26. Which compound could be X in the two-stage reaction pathway?

$$C_2H_4 \rightarrow \mathbf{X} \rightarrow C_2H_5OH$$

- A. C_2H_6
- B. C₂H₃OH
- C. C_2H_5Br
- $\mathsf{D}. \quad \mathsf{C}_2\mathsf{H}_4\mathsf{Cl}_2$

27. Applying IUPAC rules, what is the name of the compound?

- A. 1-ethyl-1,3-dimethylbut-2-ene
- B. 2-ethyl-4-methylpent-3-ene
- C. 2-methyl-4-ethylpent-3-ene
- D. 2,4-dimethylhex-2-ene
- 28. Which statements about the chlorine free radical are correct?
 - I. It has 18 electrons.
 - II. It is an uncharged species.
 - III. It is formed by homolytic fission.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 29. Which statement is correct about the polymerization of ethene to poly(ethene)?
 - A. The polymer is an alkene.
 - B. The monomer ethene and the repeating unit have the same empirical formula.
 - C. The monomer ethene is less reactive than the polymer.
 - D. The polymer contains C–C single and C=C double bonds.

- **30.** A student weighs a standard 70.00 g mass five times using the same balance. Each time she obtains a reading of 71.20 g. Which statement is correct about the precision and accuracy of the measurements?
 - A. Precise and accurate
 - B. Precise but inaccurate
 - C. Accurate but not precise
 - D. Neither accurate nor precise