International Baccalaureate
Baccalauréat International
Bachillerato Internacional

88106104

CHEMISTRY
 STANDARD LEVEL
 PAPER 1

Thursday 11 November 2010 (afternoon)
45 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
The Periodic Table

1	2											3	4	5	6	7	0
$\begin{gathered} 1 \\ \mathbf{H} \\ 1.01 \end{gathered}$				Atomic Number													$\begin{gathered} 2 \\ \mathrm{He} \\ 4.00 \end{gathered}$
$\begin{gathered} 3 \\ \mathbf{L i} \\ 6.94 \end{gathered}$	$\begin{gathered} 4 \\ \mathbf{B e} \\ 9.01 \end{gathered}$			Atomic Mass								$\begin{gathered} 5 \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\begin{gathered} 6 \\ \mathbf{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{O} \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} 10 \\ \mathbf{N e} \\ 20.18 \end{gathered}$
	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$											$\begin{gathered} 13 \\ \mathbf{A l} \\ 26.98 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{S i} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.06 \end{gathered}$	$\begin{gathered} 17 \\ \text { Cl } \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.95 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathbf{C a} \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \mathbf{S c} \\ 44.96 \end{gathered}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ 47.90 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ 52.00 \end{gathered}$	$\begin{gathered} 25 \\ \text { Mn } \\ 54.94 \end{gathered}$	$\begin{gathered} 26 \\ \text { Fe } \\ 55.85 \end{gathered}$	$\begin{gathered} 27 \\ \mathbf{C o} \\ 58.93 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.71 \end{gathered}$	$\begin{gathered} 29 \\ \mathbf{C u} \\ 63.55 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.37 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{G e} \\ 72.59 \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \mathbf{S e} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
$\begin{gathered} 37 \\ \mathbf{R b} \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ 92.91 \end{gathered}$	$\begin{gathered} 42 \\ \text { Mo } \\ 95.94 \end{gathered}$	$\begin{gathered} 43 \\ \mathbf{T c} \\ 98.91 \end{gathered}$	$\begin{gathered} 44 \\ \mathbf{R u} \\ 101.07 \end{gathered}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.42 \end{gathered}$	$\begin{gathered} 47 \\ \mathbf{A g} \\ 107.87 \end{gathered}$	$\begin{gathered} 48 \\ \text { Cd } \\ 112.40 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ 118.69 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.75 \end{gathered}$	$\begin{gathered} 52 \\ \mathrm{Te} \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ 126.90 \end{gathered}$	$\begin{gathered} 54 \\ \mathbf{X e} \\ 131.30 \end{gathered}$
$\begin{gathered} 55 \\ \text { Cs } \\ 132.91 \end{gathered}$	$\begin{gathered} 56 \\ \mathbf{B a} \\ 137.34 \end{gathered}$	$\begin{gathered} 57 \dagger \\ \mathbf{L a} \\ 138.91 \end{gathered}$	$\begin{gathered} 72 \\ \mathbf{H f} \\ 178.49 \end{gathered}$	$\begin{gathered} 73 \\ \text { Ta } \\ 180.95 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.85 \end{gathered}$	$\begin{gathered} 75 \\ \mathbf{R e} \\ 186.21 \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ 190.21 \end{gathered}$	$\begin{gathered} 77 \\ \text { Ir } \\ 192.22 \end{gathered}$	$\begin{array}{\|c} 78 \\ \text { Pt } \\ 195.09 \end{array}$	$\begin{gathered} 79 \\ \mathbf{A u} \\ 196.97 \end{gathered}$	$\begin{array}{\|c} 80 \\ \mathbf{H g} \\ 200.59 \end{array}$	$\begin{gathered} 81 \\ \text { Tl } \\ 204.37 \end{gathered}$	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.19 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ (210) \end{gathered}$	$\begin{gathered} 85 \\ \mathbf{A t} \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \text { Fr } \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathbf{R a} \\ (226) \end{gathered}$	$\begin{gathered} 89 \ddagger \\ \mathbf{A c} \\ (227) \end{gathered}$															
\dagger			$\begin{gathered} 58 \\ \mathrm{Ce} \\ 140.12 \end{gathered}$	$\begin{gathered} 59 \\ \text { Pr } \\ 140.91 \end{gathered}$	$\begin{gathered} 60 \\ \text { Nd } \\ 144.24 \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \\ 146.92 \end{gathered}$	$\begin{gathered} 62 \\ \mathbf{S m} \\ 150.35 \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ 151.96 \end{gathered}$	$\begin{array}{\|c} 64 \\ \text { Gd } \\ 157.25 \end{array}$	$\begin{gathered} 65 \\ \text { Tb } \\ 158.92 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.50 \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ 164.93 \end{gathered}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.26 \end{gathered}$	$\begin{gathered} 69 \\ \mathbf{T m} \\ 168.93 \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.04 \end{gathered}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 174.97 \end{gathered}$	
\pm			$\begin{gathered} 90 \\ \text { Th } \\ 232.04 \end{gathered}$	$\begin{gathered} 91 \\ \mathbf{P a} \\ 231.04 \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.03 \end{gathered}$	$\begin{gathered} 93 \\ \mathbf{N p} \\ (237) \end{gathered}$	$\begin{gathered} 94 \\ \mathbf{P u} \\ (242) \end{gathered}$	$\begin{gathered} 95 \\ \mathbf{A m} \\ (243) \end{gathered}$	$\begin{gathered} 96 \\ \mathbf{C m} \\ (247) \end{gathered}$	$\begin{gathered} 97 \\ \mathbf{B k} \\ (247) \end{gathered}$	$\begin{gathered} 98 \\ \mathbf{C f} \\ (251) \end{gathered}$	$\begin{gathered} 99 \\ \text { Es } \\ (254) \end{gathered}$	$\begin{gathered} 100 \\ \mathbf{F m} \\ (257) \end{gathered}$	$\begin{gathered} 101 \\ \mathbf{M d} \\ (258) \end{gathered}$	$\begin{gathered} 102 \\ \text { No } \\ (259) \end{gathered}$	$\begin{gathered} 103 \\ \mathbf{L r} \\ (260) \end{gathered}$	

1. What is the total number of nitrogen atoms in two mol of $\mathrm{NH}_{4} \mathrm{NO}_{3}$?
A. 4
B. 6.02×10^{23}
C. 1.20×10^{24}
D. 2.41×10^{24}
2. On analysis, a compound with molar mass $60 \mathrm{~g} \mathrm{~mol}^{-1}$ was found to contain 12 g of carbon, 2 g of hydrogen and 16 g of oxygen. What is the molecular formula of the compound?
A. $\mathrm{CH}_{2} \mathrm{O}$
B. $\mathrm{CH}_{4} \mathrm{O}$
C. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
D. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
3. Equal masses of the metals $\mathrm{Na}, \mathrm{Mg}, \mathrm{Ca}$ and Ag are added to separate samples of excess $\mathrm{HCl}(\mathrm{aq})$. Which metal produces the greatest total volume of $\mathrm{H}_{2}(\mathrm{~g})$?
A. Na
B. Mg
C. Ca
D. Ag
4. The graph below represents the relationship between two variables in a fixed amount of gas.

Which variables could be represented by each axis?
A.

\boldsymbol{x}-axis	\boldsymbol{y}-axis
pressure	temperature
volume	temperature
pressure	volume
temperature	volume

5. $\quad 8.5 \mathrm{~g}^{\text {of } \mathrm{NH}_{3}}$ are dissolved in $\mathrm{H}_{2} \mathrm{O}$ to prepare a $500 \mathrm{~cm}^{3}$ solution. Which statements are correct?
I. NH_{3} is the solute and $\mathrm{H}_{2} \mathrm{O}$ is the solution
II. The concentration of the solution is $17 \mathrm{~g} \mathrm{dm}^{-3}$
III. $\left[\mathrm{NH}_{3}\right]=1.0 \mathrm{moldm}^{-3}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
6. Which statement about the species ${ }^{63} \mathrm{Cu}^{2+}$ and ${ }^{65} \mathrm{Cu}^{+}$is correct?
A. Both species have the same number of protons.
B. Both species have the same number of electrons.
C. Both species have the same number of neutrons.
D. Both species have the same electron arrangement.
7. Which statement about the isotopes of an element is correct?
A. They have the same mass number.
B. They have a different atomic number.
C. They have the same chemical properties.
D. They are located in different places in the periodic table.
8. Which properties of the alkali metals decrease going down group 1?
A. First ionization energy and reactivity
B. Melting point and atomic radius
C. Reactivity and electronegativity
D. First ionization energy and melting point
9. Which statements about the periodic table are correct?
I. The elements Mg, Ca and Sr have similar chemical properties.
II. Elements in the same period have the same number of main energy levels.
III. The oxides of Na, Mg and P are basic.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
10. The electronegativities of four different elements are given below (the letters are not their chemical symbols).

Element	W	X	Y	Z
Electronegativity	0.9	1.2	3.4	4.0

Based on this information which statement is correct?
A. W is a non-metal.
B. W and X form an ionic compound.
C. Y is a metal.
D. Y and Z form a covalent compound.
11. Which species contain a dative covalent bond?
I. HCHO
II. CO
III. $\mathrm{H}_{3} \mathrm{O}^{+}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
12. Which substance is made up of a lattice of positive ions and free moving electrons?
A. Graphite
B. Sodium chloride
C. Sulfur
D. Sodium
13. Which order is correct when the following compounds are arranged in order of increasing melting point?
A. $\mathrm{CH}_{4}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CH}_{4}$
C. $\mathrm{CH}_{4}<\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}$
D. $\mathrm{H}_{2} \mathrm{~S}<\mathrm{CH}_{4}<\mathrm{H}_{2} \mathrm{O}$
14. Which statement is correct given the enthalpy level diagram below?

A. The reaction is endothermic and the products are more thermodynamically stable than the reactants.
B. The reaction is exothermic and the products are more thermodynamically stable than the reactants.
C. The reaction is endothermic and the reactants are more thermodynamically stable than the products.
D. The reaction is exothermic and the reactants are more thermodynamically stable than the products.
15. Identical pieces of magnesium are added to two beakers, A and B, containing hydrochloric acid. Both acids have the same initial temperature but their volumes and concentrations differ.
Beaker A
$1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$
Beaker B

Which statement is correct?
A. The maximum temperature in A will be higher than in B .
B. The maximum temperature in A and B will be equal.
C. It is not possible to predict whether A or B will have the higher maximum temperature.
D. The temperature in A and B will increase at the same rate.
16. Which equation best represents the bond enthalpy of HCl ?
A. $\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{H}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g})$
B. $\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{H}(\mathrm{g})+\mathrm{Cl}(\mathrm{g})$
C. $\mathrm{HCl}(\mathrm{g}) \rightarrow \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})$
D. $2 \mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
17. A piece of zinc was added to aqueous nitric acid and the volume of hydrogen gas produced was measured every minute. The results are plotted on the graph below.

Which graph would you expect if the same mass of powdered zinc was added to nitric acid with the same concentration?

18. Which changes increase the rate of the reaction below?

$$
\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}(\mathrm{l})+\mathrm{HCl}(\mathrm{~g})
$$

I. Increase of pressure
II. Increase of temperature
III. Removal of $\mathrm{HCl}(\mathrm{g})$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
19. What is the equilibrium constant expression for the reaction below?

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

A. $\quad K_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}$
B. $K_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]}$
C. $K_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{2\left[\mathrm{NO}_{2}\right]}$
D. $\quad K_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}$
20. The formation of nitric acid, $\mathrm{HNO}_{3}(\mathrm{aq})$, from nitrogen dioxide, $\mathrm{NO}_{2}(\mathrm{~g})$, is exothermic and is a reversible reaction.

$$
4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons 4 \mathrm{HNO}_{3}(\mathrm{aq})
$$

What is the effect of a catalyst on this reaction?
A. It increases the yield of nitric acid.
B. It increases the rate of the forward reaction only.
C. It increases the equilibrium constant.
D. It has no effect on the equilibrium position.
21. What is the conjugate base of $\mathrm{H}_{2} \mathrm{CO}_{3}$ according to the Brønsted-Lowry theory?
A. $\mathrm{CO}_{3}{ }^{2-}$
B. HCO_{3}^{-}
C. $\mathrm{H}_{3} \mathrm{CO}_{3}{ }^{+}$
D. CO_{2}
22. A solution of acid A has a pH of 1 and a solution of acid B has a pH of 2. Which statement must be correct?
A. Acid A is stronger than acid B
B. $[\mathrm{A}]>[\mathrm{B}]$
C. The concentration of H^{+}ions in A is higher than in B
D. The concentration of H^{+}ions in B is twice the concentration of H^{+}ions in A
23. Consider the following reaction.

$$
\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{Fe}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+5 \mathrm{Fe}^{3+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Which statement is correct?
A. MnO_{4}^{-}is the oxidizing agent and it loses electrons.
B. MnO_{4}^{-}is the reducing agent and it loses electrons.
C. MnO_{4}^{-}is the oxidizing agent and it gains electrons.
D. MnO_{4}^{-}is the reducing agent and it gains electrons.
24. Metal A is more reactive than metal B . A standard voltaic cell is made as shown.

Which statement is correct?
A. Electrons flow in the external circuit from A to B.
B. Positive ions flow through the salt bridge from A to B.
C. Positive ions flow in the external circuit from B to A.
D. Electrons flow through the salt bridge from B to A.
25. Which statement is correct for the electrolysis of molten lead iodide, PbI_{2} ?
A. Chemical energy is converted into electrical energy.
B. Pb^{2+} ions are oxidized at the negative electrode (cathode).
C. I_{2} is produced at the positive electrode (anode).
D. Ions are produced at both electrodes.
26. Which of the following substances are structural isomers of each other?
I. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$
II. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{3}$
III. $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
27. Which order is correct when the following substances are arranged in order of increasing boiling point?
A. $\mathrm{CH}_{3} \mathrm{CH}_{3}<\mathrm{CH}_{3} \mathrm{CHO}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
B. $\mathrm{CH}_{3} \mathrm{CHO}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{CH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{CH}_{3}<\mathrm{CH}_{3} \mathrm{CHO}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{3}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{CHO}$
28. Which monomer could be used to form a polymer with the following repeating unit?

A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$
B. $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$
C. $\mathrm{CH}_{2} \mathrm{CHCl}$
D. CHClCHCl
29. Which reaction pathway describes how ethanol can be formed?
A. ethene $\xrightarrow{\text { addition }}$ chloroethane $\xrightarrow{\text { elimination }}$ ethanol
B. ethane $\xrightarrow{\text { substitution }}$ chloroethane $\xrightarrow{\text { nucleophilic substitution }}$ ethanol
C. ethene $\xrightarrow{\text { substitution }}$ ethanol
D. ethane $\xrightarrow{\text { addition }}$ ethanol
30. Density can be calculated by dividing mass by volume. $0.20 \pm 0.02 \mathrm{~g}$ of a metal has a volume of $0.050 \pm 0.005 \mathrm{~cm}^{3}$. How should its density be recorded using this data?
A. $\quad 4.0 \pm 0.025 \mathrm{~g} \mathrm{~cm}^{-3}$
B. $4.0 \pm 0.8 \mathrm{~g} \mathrm{~cm}^{-3}$
C. $\quad 4.00 \pm 0.025 \mathrm{~g} \mathrm{~cm}^{-3}$
D. $\quad 4.00 \pm 0.8 \mathrm{~g} \mathrm{~cm}^{-3}$

