International Baccalaureate ${ }^{\circledR}$
Baccalauréat International
Bachillerato Internacional

CHEMISTRY
 STANDARD LEVEL
 PAPER 1

Thursday 8 May 2008 (afternoon)
45 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
The Periodic Table

1	2											3	4	5	6	7	0
$\begin{gathered} 1 \\ \mathbf{H} \\ 1.01 \end{gathered}$				Atomic Number Element Atomic Mass													$\begin{gathered} 2 \\ \mathrm{He} \\ 4.00 \end{gathered}$
$\begin{gathered} 3 \\ \mathbf{L i} \\ 6.94 \end{gathered}$	$\begin{gathered} 4 \\ \mathbf{B e} \\ 9.01 \end{gathered}$											$\begin{gathered} 5 \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\begin{gathered} { }^{6} \\ \mathbf{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{0} \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} 10 \\ \mathbf{N e} \\ 20.18 \end{gathered}$
$\begin{gathered} 11 \\ \mathbf{N a} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$											$\begin{gathered} 13 \\ \mathbf{A l} \\ 26.98 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{S i} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.06 \end{gathered}$	$\begin{gathered} 17 \\ \text { Cl } \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.95 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40.08 \end{gathered}$	$\begin{array}{\|c} 21 \\ \mathbf{S c} \\ 44.96 \end{array}$	$\begin{array}{\|c} 22 \\ \mathrm{Ti} \\ 47.90 \end{array}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ 52.00 \end{gathered}$	$\begin{gathered} 25 \\ \text { Mn } \\ 54.94 \end{gathered}$	$\begin{gathered} 26 \\ \text { Fe } \\ 55.85 \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ 58.93 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.71 \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ 63.55 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.37 \end{gathered}$	$\begin{gathered} 31 \\ \text { Ga } \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \text { Ge } \\ 72.59 \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \mathbf{S e} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
$\begin{gathered} 37 \\ \text { Rb } \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ 92.91 \end{gathered}$	$\begin{gathered} 42 \\ \mathbf{M o} \\ 95.94 \end{gathered}$	$\begin{gathered} 43 \\ \text { Tc } \\ 98.91 \end{gathered}$	$\begin{gathered} 44 \\ \mathbf{R u} \\ 101.07 \end{gathered}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.42 \end{gathered}$	$\begin{array}{\|c} 47 \\ \mathbf{A g} \\ 107.87 \end{array}$	$\begin{gathered} 48 \\ \mathbf{C d} \\ 112.40 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ 118.69 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.75 \end{gathered}$	$\begin{array}{\|c} 52 \\ \text { Te } \\ 127.60 \end{array}$	$\begin{gathered} 53 \\ \mathbf{I} \\ 126.90 \end{gathered}$	$\begin{gathered} 54 \\ \mathbf{X e} \\ 131.30 \end{gathered}$
$\begin{gathered} 55 \\ \text { Cs } \\ 132.91 \end{gathered}$	$\begin{gathered} 56 \\ \text { Ba } \\ 137.34 \end{gathered}$	$\begin{array}{\|c\|} 57 \dagger \\ \text { La } \\ 138.91 \end{array}$	$\begin{array}{\|c} 72 \\ \mathbf{H f} \\ 178.49 \end{array}$	$\begin{gathered} 73 \\ \text { Ta } \\ 180.95 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.85 \end{gathered}$	$\begin{gathered} 75 \\ \mathbf{R e} \\ 186.21 \end{gathered}$	$\begin{gathered} 76 \\ \mathbf{O s} \\ 190.21 \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.22 \end{gathered}$	$\begin{gathered} 78 \\ \mathbf{P t} \\ 195.09 \end{gathered}$	$\begin{array}{\|c} 79 \\ \mathbf{A u} \\ 196.97 \end{array}$	$\begin{array}{\|c} 80 \\ \mathbf{H g} \\ 200.59 \end{array}$	$\begin{gathered} 81 \\ \mathbf{T l} \\ 204.37 \end{gathered}$	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.19 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ (210) \end{gathered}$	$\begin{gathered} 85 \\ \mathbf{A t} \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathbf{F r} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{Ra} \\ (226) \end{gathered}$	$\begin{gathered} 89 \ddagger \\ \mathbf{A c} \\ (227) \end{gathered}$															
		\dagger	$\begin{array}{\|c} 58 \\ \mathrm{Ce} \\ 140.12 \end{array}$	$\begin{gathered} 59 \\ \text { Pr } \\ 140.91 \end{gathered}$	$\begin{gathered} 60 \\ \mathbf{N d} \\ 144.24 \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \\ 146.92 \end{gathered}$	$\begin{gathered} 62 \\ \mathbf{S m} \\ 150.35 \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ 151.96 \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} 65 \\ \text { Tb } \\ 158.92 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.50 \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ 164.93 \end{gathered}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.26 \end{gathered}$	$\begin{gathered} 69 \\ \text { Tm } \\ 168.93 \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.04 \end{gathered}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 174.97 \end{gathered}$	
		*	$\begin{gathered} 90 \\ \text { Th } \\ 232.04 \end{gathered}$	$\begin{gathered} 91 \\ \mathbf{P a} \\ 231.04 \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.03 \end{gathered}$	$\begin{gathered} 93 \\ \mathbf{N p} \\ (237) \end{gathered}$	$\begin{gathered} 94 \\ \text { Pu } \\ (242) \end{gathered}$	$\begin{gathered} 95 \\ \mathbf{A m} \\ (243) \end{gathered}$	$\begin{gathered} 96 \\ \text { Cm } \\ (247) \end{gathered}$	$\begin{gathered} 97 \\ \text { Bk } \\ (247) \end{gathered}$	$\begin{gathered} 98 \\ \text { Cf } \\ (251) \end{gathered}$	$\begin{gathered} 99 \\ \text { Es } \\ (254) \end{gathered}$	$\begin{gathered} 100 \\ \text { Fm } \\ (257) \end{gathered}$	$\begin{gathered} 101 \\ \text { Md } \\ (258) \end{gathered}$	$\begin{gathered} 102 \\ \text { No } \\ (259) \end{gathered}$	$\begin{gathered} 103 \\ \mathbf{L r} \\ (260) \end{gathered}$	

1. How many molecules are present in a 9.0 g sample of water?
A. 0.5
B. 1.0
C. 6.0×10^{23}
D. 3.0×10^{23}
2. What volume of carbon dioxide is formed when 8 g of methane burns completely at room temperature and pressure? (1 mole of a gas occupies $24 \mathrm{dm}^{3}$ at room temperature and pressure.)

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A. $8 \mathrm{dm}^{3}$
B. $12 \mathrm{dm}^{3}$
C. $16 \mathrm{dm}^{3}$
D. $24 \mathrm{dm}^{3}$
3. 28 g of metal M reacted with 8 g of oxygen to form an oxide with the formula MO. What is the relative atomic mass of M?
A. 14
B. 28
C. 56
D. 112
4. What is the maximum mass of iron that can be produced from the reduction of 80 tonnes of iron(III) oxide ($M_{r}=160$), based on this equation?

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}
$$

A. 28 tonnes
B. 56 tonnes
C. 84 tonnes
D. 112 tonnes
5. Which species represent a pair of isotopes?

Species	Number of protons	Number of electrons	Number of neutrons
L	12	12	12
M	13	13	13
P	13	10	13
Q	12	12	14

A. L and M
B. L and P
C. $\quad \mathrm{P}$ and Q
D. L and Q
6. Bromine exists as the isotopes ${ }^{79} \mathrm{Br}$ and ${ }^{81} \mathrm{Br}$. What is the percentage of ${ }^{79} \mathrm{Br}$ in a sample with a relative atomic mass of 79.9 ?
A. 40%
B. 45%
C. 50%
D. 55%
7. Which properties decrease in value when descending group 1?
I. Atomic radius
II. Ionization energy
III. Electronegativity
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
8. The ionization energies of three consecutive elements in the periodic table are 1680, 2080 and $494 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Which of the following shows the elements with these values?
A. $\mathrm{O} \quad \mathrm{F} \mathrm{Ne}$
B. F Ne Na
C. Ne Na Mg
D. $\mathrm{Na} \quad \mathrm{Mg} \mathrm{Al}$
9. Which substance will not conduct an electric current?
A. $\mathrm{C}(\mathrm{s})$ (graphite)
B. $\mathrm{NaF}(1)$
C. $\mathrm{CaO}(\mathrm{s})$
D. $\mathrm{KI}(\mathrm{aq})$
10. Which of the following liquids is non-polar?
A. Water
B. Hexane
C. Propanone
D. Ethanol
11. The following substances all contain a nitrogen to nitrogen bond: $\mathrm{N}_{2}, \mathrm{~N}_{2} \mathrm{H}_{4}, \mathrm{~N}_{2} \mathrm{H}_{2}$. Which shows them in increasing order of nitrogen to nitrogen bond length (smallest first)?
A. $\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{~N}_{2} \mathrm{H}_{2}, \mathrm{~N}_{2}$
B. $\mathrm{N}_{2}, \mathrm{~N}_{2} \mathrm{H}_{2}, \mathrm{~N}_{2} \mathrm{H}_{4}$
C. $\mathrm{N}_{2} \mathrm{H}_{2}, \mathrm{~N}_{2} \mathrm{H}_{4}, \mathrm{~N}_{2}$
D. $\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{~N}_{2}, \mathrm{~N}_{2} \mathrm{H}_{2}$
12. Which molecules have a bond angle of 109.5° or less?
I. NH_{3}
II. CO_{2}
III. CHCl_{3}
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
13. The temperature of $1 \mathrm{dm}^{3}$ of a gas is increased from $32^{\circ} \mathrm{C}$ to $64^{\circ} \mathrm{C}$ at constant pressure. What is the new volume in dm^{3} ?
A. 1.1
B. 1.3
C. 1.6
D. 2.0
14. Which statement about evaporation is correct?
A. The liquid must be heated for evaporation to occur.
B. The liquid must be at its boiling point for evaporation to occur.
C. High energy particles leave the surface of the liquid as evaporation occurs.
D. The liquid becomes warmer as evaporation occurs.
15. The heat produced when 0.01 mol of ethanol was burned raised the temperature of 100 g of water by $20^{\circ} \mathrm{C}$. The specific heat capacity of water is $4.2 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$.

Which is the correct expression for the magnitude of the enthalpy of combustion of ethanol in $\mathrm{J} \mathrm{mol}^{-1}$?
A. $\frac{100 \times 4.2 \times 20}{0.01}$
B. $\frac{100 \times 4.2 \times 0.01}{20}$
C. $\frac{4.2 \times 20 \times 0.01}{100}$
D. $\frac{20 \times 100 \times 0.01}{4.2}$
16. Which change does not lead to an increase in entropy?
A. Mixing nitrogen and oxygen gases at room temperature
B. Cooling steam so that it condenses to water
C. Heating hexane to its boiling point
D. Dissolving sugar in water
17. Which combination is correct for an endothermic reaction taking place in solution?

	ΔH	Temperature of solution
A.	+	increases
B.	+	decreases
	+	increases
C.	-	decreases
D.	-	

18. The enthalpy changes for two reactions are shown below.

$$
\begin{array}{ll}
\mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) & \Delta H^{\ominus}=-300 \mathrm{~kJ} \\
2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) & \Delta H^{\ominus}=-800 \mathrm{~kJ}
\end{array}
$$

What is the enthalpy change for this reaction in kJ ?

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

A. -200
B. -500
C. -1100
D. -1400
19. In the collision theory, what is important in determining whether a collision results in a chemical reaction?
I. The kinetic energy of the molecules
II. The orientation of the molecules
III. The collision frequency of the molecules
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
20. Which units could be used for the rate of a chemical reaction?
A. $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~min}$
B. $\mathrm{mol}^{-1} \mathrm{~min}^{-1}$
C. $\mathrm{dm}^{3} \mathrm{~min}$
D. $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~min}^{-1}$
21. Which change will increase the equilibrium concentration of sulfur trioxide in this reaction?

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta H^{\ominus}=\text { negative }
$$

A. Decreasing the concentration of oxygen
B. Increasing the pressure
C. Using a catalyst
D. Increasing the temperature
22. Which change increases the pH of a solution from 3 to 6 ?
A. Doubling the $\left[\mathrm{H}^{+}\right]$
B. Halving the $\left[\mathrm{OH}^{-}\right]$
C. Decreasing the $\left[\mathrm{H}^{+}\right]$by a factor of 1000
D. Decreasing the $\left[\mathrm{OH}^{-}\right]$by a factor of 1000
23. Which pair of compounds, in aqueous solution, could be used to make a buffer solution?
A. $\mathrm{CH}_{3} \mathrm{COOH}$ and HCl
B. HCl and NaOH
C. HCl and $\mathrm{NH}_{4} \mathrm{Cl}$
D. HCOOH and NaOH
24. In which species does chromium have an oxidation number of +3 ?
A. CrO_{4}^{2-}
B. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
C. CrO_{3}
D. $\mathrm{Cr}(\mathrm{OH})_{3}$
25. In which reaction does hydrogen act as an oxidizing agent?
A. $\mathrm{Ca}+\mathrm{H}_{2} \rightarrow \mathrm{CaH}_{2}$
B. $\mathrm{F}_{2}+\mathrm{H}_{2} \rightarrow 2 \mathrm{HF}$
C. $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}$
D. $\mathrm{O}_{2}+2 \mathrm{H}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
26. Which of these occur during the electrolysis of molten sodium chloride?
I. Electrons flow through the connecting wires
II. Molten sodium forms at the positive electrode
III. Reduction occurs at the negative electrode
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
27. How many structural isomers are there with the formula $\mathrm{C}_{5} \mathrm{H}_{12}$?
A. 2
B. 3
C. 4
D. 5
28. Which is the correct formula of 2,3-dichloro-2-methylpentane?
A. $\mathrm{CH}_{3} \mathrm{CCl}\left(\mathrm{CH}_{3}\right) \mathrm{CHClCH}_{2} \mathrm{CH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CCl}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHClCHClCH}_{3}$
29. What type of reaction occurs when hexanedioic acid and 1,6 -diaminohexane react together to form nylon?
A. Addition
B. Condensation
C. Esterification
D. Substitution
30. What product results from the reaction of $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$ with Br_{2} ?
A. $\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{Br}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
C. $\mathrm{CH}_{3} \mathrm{CHBrCH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBr}_{2}$

