M06/4/CHEMI/SP3/ENG/TZ0/XX/M

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

MARKSCHEME

May 2006

CHEMISTRY

Standard Level

Paper 3

18 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

– 2 –

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IBCA.

Option A – Higher physical organic chemistry

A1.

Information	Analytical technique
Number of differents hydrogen environments	$(^{1}\mathrm{H})\mathrm{NMR};$
Types of functional groups	IR;
Molecular mass	Mass spectrometry;

Award [2] for three correct, [1] for two correct.

A2. (a)	(C=O) 1680 to 1750 (cm^{-1}); (C-O) 1000 to 1300 (cm^{-1});	
	(C-H) 2840 to 3095 (cm ⁻¹); Award [1] for any two.	[1 max]

(b) (OH) $2500 \text{ to } 3300 \text{ (cm}^{-1}\text{)};$

[2]

[1]

A3. (a) (i) $(S_N 2 \text{ mechanism})$

curly arrow must start from O or negative charge

-7-

*Intermediate structure showing overall negative charge and partial bonds. Accept negative charge to be indicated as delocalised between the HO-CH*₂-*Cl.*

$$\rightarrow$$
 HO-CH₂CH₂CH₂CH₂+Cl⁻;

(ii) $(S_N 1 mechanism)$

formation of carbocation / loss of Cl^{-}

carbocation + OH^-

[2]

;

[3]

(b) reaction in (a)(i)
 (rate =) k[OH⁻][CH₃CH₂CH₂CH₂Cl];
 Accept [KOH] in place of [OH⁻]

reaction in (a)(ii) (rate =) k[(CH₃)₃C Cl]; ECF from mechanisms in (a).

[2]

(c) reaction is faster and C-Br bond enthalpy is lower (than C-Cl) / less energy needed to break
 C-Br / C-Br bond weaker. [1]

- 8 -

A4. ([A] against time) - straight line with negative gradient; Accept any decreasing curve ([B] against time) - decreasing curve; Award [1] unless half - lives clearly not constant (rate against [A]) - any horizontal straight line; (rate against [B]) - straight line through origin; [3] Award [3] for all four correct, award [2] for any three correct and [1] for any two correct.

-9-

A5. (a)

(i)

$$NH_{3} + H_{2}O \rightleftharpoons NH_{4}^{+} + OH^{-};$$

$$Do not penalise \rightarrow$$

$$Do not accept NH_{4}OH$$

$$[1]$$

(ii)
$$K_{\rm b} = \frac{[\rm NH_4^+][\rm OH^-]}{[\rm NH_3]};$$
 [1]

(b)
$$K_{\rm b} = 10^{-4.75} = 1.78 \times 10^{-5};$$

 $[OH^{-}] = \sqrt{1.78 \times 10^{-5} \times 0.2} = (1.89 \times 10^{-3});$

 $pOH = -log[OH^{-}] = 2.72;$ Accept answer in range 2.68 to 2.76. Correct answer scores [3]. Apply ECF throughout this part.

[3]

Option B – Medicines and drugs

B1.	(a)	a moderate dose may induce sedation / reduce anxiety or tension / slower mental activity / slows CNS; a high dose may induce sleep / coma / unconsciousness / death; <i>Award III for both</i>	7]
	(b)	orange to green; Cr ³⁺ / chromium(III);	[2]
B2.	(a)	amphetamines / stimulants; increased heart rate / increased blood pressure / increased breathing rate / dilation of pupils / constriction of arteries / sweating / increased alertness / decreased appetite;	[2]
	(b)	(i) nicotine; Accept nicotin.	[1]
		 (ii) increased heart rate; increased blood pressure; reduced urine output; increased concentration / stimulating effect; <i>[2 mathematication for any two.</i> (iii) increased risk of cancer; increased risk of stroke / (coronary) thrombosis / heart disease; ulcers; emphysema / bronchitis/shortage of breath; coughing / bad breath / yellowing of teeth or fingers; effect on pregnancy; <i>[2 mathematication for any two]</i> 	[x] [x]
B3.	(a)	penicillins prevent bacteria cell wall formation / causes cell wall to burst or disintegrate; /	[1]
	(b)	broad-spectrum antibiotics are effective against a wide range of bacteria / (whereas) narrow-spectrum only attack a limited range of bacteria <i>OWTTE</i> ;	[1]
	(c)	bacteria develop resistance / tolerance to doses of penicillins; (penicillins lose effect and) increasing doses must be prescribed; useful/harmless bacteria may be killed; [2 ma Do not accept good or friendly bacteria. Award [1] each for any two.	'x]

B4.	(a)	 viruses are smaller; viruses do not have nuclei/cell walls / bacteria do have nuclei/cell walls; viruses do not have cytoplasm / bacteria do have cytoplasm; viruses do not feed/excrete/grow / bacteria do feed/excrete/grow; viruses use cell material of the invaded cell to reproduce themselves; <i>Award</i> [1] each for any two.
	(b)	acyclovir becomes part of DNA of virus / mimics nucleotide or guanine; prevents other nucleotides from attaching/stops virus replication;[2]
	(c)	if receptor site is modified/altered, HIV virus could not bind to cells; drug prevents HIV from losing the protein coat; reverse transcriptase can be blocked (to avoid converting the virus into a structure that can enter the nucleus of the host cell); the production of new viral RNA and proteins can be blocked; drug stops viruses leaving the cells; [2 max] Award [1] each for any two.

- 11 -

Option C – Human biochemistry

C1. (a) (i) structure of either dipeptide.

Award [1] for the correct peptide bond and an additional [1] if the rest of the structure is correct.

Accept
$$-c n - c - n - c - n - c - n - for the peptide bond.$$

(ii) condensation; $H_2O/water;$

[2]

[1]

 (b) mixture placed on gel/paper; use of buffer solution; potential difference applied; amino acids move differently (depending on pH / isoelectric point); develop/spray with ninhydrin; compare distances travelled with standards (OWTTE) / compare the isoelectric points; *Award* [1] each for any four.

(c) (i) sequence/chain of amino acids;

- (ii) α -helix = intramolecular/spiral/*OWTTE*; β -sheet = attraction between chains (accept intermolecular) / *OWTTE*; [2] *Accept suitable diagram*.
- (iii) hydrogen bonding; disulphide links / bonds / bridges; van der Waals' forces; ionic / ion-dipole / dipole-dipole; Award [2] for any three. Award [1] for any two.

C2. (a)

 (b) there are no more double bonds / all single bonds (in the R group); molecules pack closer together/straighter chains / regular structure / fewer kinks / OWTTE; stronger van der Waals' forces; [3] Accept London / dispersion forces / vdW but not intermolecular.

- 13 -

C3. A is fat soluble and C is water soluble;A has only one OH group / A is mostly hydrocarbon;C has many OH groups which can form hydrogen bonds with water;Do not penalise if OH is stated with a minus sign.

[3]

Option D – Environmental chemistry

D1.	(carbon monoxide) incomplete combustion of fossil fuels/hydrocarbons; any correct incomplete combustion (<i>e.g.</i> $C + \frac{1}{2}O_2 \rightarrow CO$); it blocks the capacity of hemoglobin or blood to transport oxygen / poisonous; catalytic converters / increase air to fuel ratio / use lean burn engine;			
	(sul con S+	fur ox nbustic $O_2 \rightarrow$	ides) on of fossil fuels that contain sulfur / burning coal / smelting of sulfide ores; SO_2 ;	
	Acc	ept 22	$S + 3O_2 \rightarrow 2SO_3$.	
	SO	₂ prod	uces emphysema / irritates mucous membrane (tissues), or respiratory system /	
	agg flui	ravate dised l	s asthma; bed combustion / desulfurization of fuels / alkaline scrubbing (of exhaust fumes);	[4]
D2.	(a)	(i)	agriculture / irrigation and industry; Both uses are needed.	[1]
		(ii)	oceans/seas; glaciers; Accept ice caps / polar regions / Antarctica or Arctic. If more than two answers are given, wrong answers cancel out correct answers.	[2]
	(b)	(i)	Passed through resins containing silicates/zeolites; Na ⁺ replaced by H ⁺ ; Cl ⁻ replaced by OH ⁻ ; H ⁺ + OH ⁻ \rightarrow H ₂ O; If positive ions and negative ions given in place of Na ⁺ and Cl ⁻ , award [1] max for second and third points.	[4]
		(ii)	no heating/fuel needed; resins need to be replaced/regenerated;	[2]
	(c)	amo in 5 lowe	unt of oxygen to decompose/oxidize the organic/biological matter; days / in a given time / at a fixed temperature; er BOD for pure water / higher BOD for water containing organic waste;	[3]

Option E – Chemical industries

E1.	envi dista avail labo	environmental impact; distance from sources of raw materials / transport links; availability of energy / water; labour force:			
	availability of investment / existence of markets; [Award [2] for any three, [1] for any two.			[2 max]	
E2.	(a)	scrap	o or recycled iron or steel;	[1]	
	(b)	haen Acce well	natite / magnetite / limonite / iron pyrite; ppt correct formula. Do not penalize incorrect formula if correct name given as		
		lime coke Do n air / Do n Any	stone / CaCO ₃ ; / C / carbon; <i>tot accept coal.</i> air enriched with hydrocarbons; <i>tot accept oxygen.</i> <i>two other raw materials for</i> [1] each	[3 max]	
	(c)	(i)	contains too much carbon / 4% C; (and so it is) brittle / has low malleability / <i>OWTTE</i> ;	[2]	
		(ii)	(adding) oxygen / converting impurities to their oxides; $C+O_2 \rightarrow CO_2 / 2C+O_2 \rightarrow 2CO / P_4 + 5O_2 \rightarrow P_4O_{10} / Si+O_2 \rightarrow SiO_2;$	[1]	
E3.	(a)	aluminium forms an oxide layer / OWTTE; protects aluminium from further attack/corrosion/contact with oxygen/air; iron oxide forms a loose/flaky layer;		[3]	
	(b)	becau Do ne	use it has a low(er) density; ot accept lighter.	[1]	

- E4. (a) as a chemical feedstock / as a source of other chemicals (plastics, dyes, *etc*); [1]
 - (b) otherwise it would produce SO_x (*accept* SO_2 or SO_3) when burned / $S + O_2 \rightarrow SO_2$ / 2S+3O₂ \rightarrow 2SO₃; producing acid rain / SO₂ + H₂O \rightarrow H₂SO₃ / SO₃ + H₂O \rightarrow H₂SO₄; [2 max] poisons catalysts;
 - (c) hydrocracking high pressure / platinum/alumina/silica catalyst; Accept formulas. branched alkanes / cyclic alkanes / aromatic compounds;

steam cracking 1000 - 1150 K / high temperature; small / low M_r alkenes;

[4]

Option F – Fuels and energy

F1.	(a)	energy to be released at practical/reasonable rates / not too fast and not too slow / controllable; minimal pollution / no health hazards; <i>Must mention pollution, do not accept clean or environmentally friendly.</i> cheap / plentiful / renewable; <i>Any two for</i> [1] <i>each.</i>	
	(b)	 (i) Nuclear fusion technology not yet developed / OWTTE / releases too much energy in a very short period of time / hard to control; 	
		 (ii) <i>Tidal energy</i> not every place has great tidal changes / needs energy storage facilities / <i>OWTTE</i>; 	[2]
F2.	(a)	photosynthesis;	[1]
	(b)	$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2;$ light and chlorophyll;	[2]
	(c)	advantages biomass is renewable; biomass is easily available / plentiful (forests/sugarcane/crops); when biomass grows it produces O_2 and captures CO_2 ; biomass is a by product of agricultural activity; Award [1] each for any two correct.	[2]
		<i>disadvantages</i> agricultural activity removes nutrients from the soil; large area of land needed to produce small amounts of fuel; energy content is lower than any fossil fuel (<i>e.g.</i> gasoline) / energy used in conversion; <i>Award</i> [1] each for any two correct.	[2]
	(d)	$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2;$	[1]

F3. advantages

no pollution; no moving parts / no maintenance; no need for refueling / sunlight is free/unlimited; produce less noise; does not use non-renewable source of energy / conserves petroleum for other uses / OWTTE; **[3 max]** *Award* **[1]** *each for any three*.

-18-

disadvantages

low power output / not very efficient / need a large surface area; battery/storage facilities needed (in absence of light); high capital cost; easily damaged; *Award* [1] each for any three.

F4. $PbO_2 + 4H^+ + SO_4^{2-} + 2e \rightarrow PbSO_4 + 2H_2O/$ $PbO_2 + 2H^+ + H_2SO_4 + 2e \rightarrow PbSO_4 + 2H_2O;$ positive because reduction occurs / electron gained;

[2]

[3 max]