MARKSCHEME

May 2006

CHEMISTRY

Standard Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IBCA.

SECTION A

1. (a) (Amount of energy required to break bonds of reactants)
$8 \times 412+2 \times 348+612+6 \times 496 / 7580\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$;
(Amount of energy released during bond formation)
$4 \times 2 \times 743+4 \times 2 \times 463 / 9648\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$;
$\Delta H=-2068\left(\mathrm{~kJ} \mathrm{or} \mathrm{kJ} \mathrm{mol}^{-1}\right)$;
ECF from above answers.
Correct answer scores [3].
Award [2] for (+)2068.
If any other units apply $\mathbf{- 1 (U)}$, but only once per paper.
(b) exothermic and ΔH^{\ominus} is negative / energy is released;

Apply ECF to sign of answer in part (a).
Do not mark if no answer to (a).
(c) $-1 \times \Delta H_{1} / 676$;
$1 \times \Delta H_{2} /-394 ;$
$2 \times \Delta H_{3} /-484$;
$\Delta H_{4}=-202\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) ;$
Accept alternative methods.
Correct answers score [4].

$-1(U)$ if units incorrect (ignore if absent).
2. (a) (i) number of protons in the nucleus/atom;

Do not accept protons and electrons.
(ii) number of protons and neutrons in the nucleus/atom;
(b) $\quad A_{\mathrm{r}}(\mathrm{Tl})=203 \times 0.2952+205 \times 0.7048 / 204.41$;
$A_{\mathrm{r}}(\mathrm{Br})=79 \times 0.5069+81 \times 0.4931 / 79.99$;
$M_{\mathrm{r}}\left(\mathrm{TlBr}_{3}\right)=204.41+3 \times 79.99=444.38 / 444.37$;
Correct answer scores [3].
Ignore units of g or $\mathrm{g} \mathrm{mol}{ }^{-1}$.
Apply ECF to M_{r} from A_{r} values.
(c) Mg^{2+};
(d) $\mathrm{Al}^{3+}, \mathrm{O}^{2-}, \mathrm{Ne}, \mathrm{Na}^{+}, \mathrm{F}^{-}, \mathrm{N}^{3-}$;

Do not accept Fl^{-}.
Award [2] for any three, [1] any two.
3. (a) $\mathrm{n}\left(\mathrm{Cu}_{2} \mathrm{O}\right)=10.0 \times 10^{3} \div 143.1=69.9 \mathrm{~mol}$;
$\mathrm{n}\left(\mathrm{Cu}_{2} \mathrm{~S}\right)=5.00 \times 10^{3} \div 159.16=31.4 \mathrm{~mol}$;
Penalise failure to convert $\mathrm{kg} \rightarrow \mathrm{g}$ once only.
$\mathrm{Cu}_{2} \mathrm{~S}$ is the limiting reagent;
ECF from above answers.
(b) $\mathrm{n}(\mathrm{Cu})=6 \times \mathrm{n}\left(\mathrm{Cu}_{2} \mathrm{~S}\right)=6 \times 31.4=188 \mathrm{~mol}$;
$\mathrm{m}(\mathrm{Cu})=188 \times 63.55=11900-12000 \mathrm{~g} / 11.9-12.0 \mathrm{~kg} ;$
If $\mathrm{Cu}_{2} \mathrm{O}$ given in (a), allow $3 \times n\left(\mathrm{Cu}_{2} \mathrm{O}\right)$ and $3 \times n\left(\mathrm{Cu}_{2} \mathrm{O}\right) \times 63.55$.
Allow ECF from (a).
4. (a) (i) loss of electrons;
(ii) (a species that) gains electrons (from another species) / causes electron loss;
(b) changes by 3 ;
reduced because its oxidation number decreased $/+6 \rightarrow+3 / 6+\rightarrow 3+$ /it has gained electrons;
5. (a) same general formula;
successive members differ by CH_{2};
Do not allow elements or just "they".
similar chemical properties;
Allow same/constant.
gradual change in physical properties;
Do not allow change periodically.
same functional group;
Award [1] each for any two.
(b) add bromine (water);
alkanes - no change / stays or turns brown;
Allow red-brown or any combination of brown, orange or yellow.
alkenes - bromine (water) decolorizes;
Do not allow clear or discoloured.
or
add (acidified) KMnO_{4};
alkanes - no change;
alkenes - KMnO_{4} decolorizes / brown / black;

SECTION B

6. (a) $K / K_{\mathrm{c}}=\left[\mathrm{SO}_{3}\right]^{2} \div\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]$;

Accept correct K_{p} expression.
(b) (i) vanadium(V) oxide / (di)vanadium pentaoxide / $\mathrm{V}_{2} \mathrm{O}_{5}$;

Allow just vanadium oxide but not correct formula.
(ii) catalyst does not affect the value of K_{c}; forward and reverse rates increase equally/by the same factor; catalyst increases the rate of the reaction;
(by providing an alternative path for the reaction with) lower activation energy;
(c) more energetic collisions / more molecules have energy greater than activation energy; more frequent collisions;
Do not accept more collisions without reference to time.
(d) (i) shifts equilibrium position to the products/right; to the side with fewer gas molecules or moles / lower volume of gas;
(ii) shifts equilibrium position to the products/right;
to compensate for loss of SO_{3} / produce more SO_{3};
(iii) no effect;
forward and backward rates increased equally / by the same factor;
(e) exothermic;
K_{c} decreases with increasing temperature / back reaction favoured / heat used up / OWTTE;
(f) (i) standard free energy change (of a reaction); [1]
(ii) (reaction is) spontaneous / spontaneity of the reaction;
(iii) spontaneity would decrease;
$-T \Delta S^{\ominus}$ becomes more positive and ΔG^{\ominus} becomes less negative/more positive / OWTTE;
7. (a) (i) electron removed from higher energy level / further from nucleus / greater atomic radius; increased repulsion by extra inner shell electrons / increased shielding effect;
(ii) Mg has twice as many / more delocalized electrons (compared to Na); the ionic charge is twice as big / greater in Mg (than Na); (electrostatic) attraction between ions and electrons is much greater;
(b) oxides of Na, Mg are basic

Al is amphoteric
$\mathrm{Si}, \mathrm{P}, \mathrm{S}$ and Cl are acidic
Award 7 correct [3], 6/5 correct [2] and 4/3 correct [1].
$\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3} / \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} /$
$\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4} / \mathrm{P}_{4} \mathrm{O}_{6}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{3}$;
$\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH} / \mathrm{MgO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2} ;$
Accept equation using $\mathrm{P}_{2} \mathrm{O}_{3}$ or $\mathrm{P}_{2} \mathrm{O}_{5}$.
(c) (i)

Allow a combination of dots, crosses or lines.
bent / V shaped / angular
104.5°;
Accept answers in range 104° to 106°.
repulsion of the two non-bonding pairs of electrons forces bond angle to be smaller / non-bonding pairs repel more than bonding pairs;
(ii) ethanol is polar and ethane is non-polar;
ethanol forms hydrogen bonds / dipole-dipole attractions with water and ethane does not;
(d) butane $<$ propanone $<$ propanol;
butane has van der Waals' forces;
Accept $v d W$, dispersion or London forces or attractions between temporary dipoles. propanone has dipole-dipole attractions;
propanol has (the stronger) H -bonding;
8. (a) $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{HNO}_{3} /$ any strong acid;
$\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{H}_{2} \mathrm{CO}_{3} /$ any weak acid;
Measure pH - the strong acid has the lower pH ;
Accept universal indicator and two correct colours.
Measure (electrical) conductivity - this is greater for the stronger acid;
Add magnesium/carbonate - more gas bubbles with the stronger acid / Mg or carbonate would disappear faster with stronger acid;
(b) amphoteric/amphiprotic;
as an acid: $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CO}_{3}^{2-} / \mathrm{HCO}_{3}^{-} \rightarrow \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} ;$
as a base: $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$; accept $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$.
(c) vinegar and factor of 10^{5};
(d) weak acid + salt of weak acid / weak acid + conjugate base.

Accept equivalent descriptions of a basic buffer.
the solution resists pH change;
Do not accept pH does not change.
when small amounts of acid or base are added;
Only award if previous answer correct.
(e) (i) $\mathrm{CH}_{2} \mathrm{CH}_{2}$;
(ii) ${\underset{\mathrm{CH}}{3}}^{\mathrm{HOOCCHNH}}{ }_{2}$;

Allow appropriate acyl chloride.
(iii) $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$;
$\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$;
Allow correct alternative.
Accept correct names as alternatives.
If correct structure and incorrect name given, award the mark.
Penalise COOH - C once only.
(f) (addition polymers) contain $\mathrm{C}=\mathrm{C} / \mathrm{C} \equiv \mathrm{C}$;
(condensation polymers) contain two reactive/functional groups;
(g) methyl methanoate;
HCOOCH_{3};
Accept other correct alternative.

