M06/4/CHEMI/SP2/ENG/TZ0/XX/M

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

MARKSCHEME

May 2006

CHEMISTRY

Standard Level

Paper 2

10 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

– 2 –

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IBCA.

SECTION A

1.	(a)	(Amount of energy required to break bonds of reactants) $8 \times 412 + 2 \times 348 + 612 + 6 \times 496 / 7580 $ (kJ mol ⁻¹);			
		(Amount of energy released during bond formation) $4 \times 2 \times 743 + 4 \times 2 \times 463/9648$ (kJ mol ⁻¹);			
		$\Delta H = -2068 \text{ (kJ or kJ mol}^{-1}\text{)};$ <i>ECF from above answers.</i> <i>Correct answer scores</i> [3].	[3]		
		Award [2] for (+)2068. If any other units apply –1(U) , but only once per paper.			
	(b)	<u>exothermic</u> and ΔH^{\ominus} is negative / energy is released; Apply ECF to sign of answer in part (a). Do not mark if no answer to (a).	[1]		
	(c)	$-1 \times \Delta H_1 / 676;$			
		$1 \times \Delta H_2$ / -394;			
		$2 \times \Delta H_3 / -484;$			
		$\Delta H_4 = -202 \text{ (kJ mol}^{-1}\text{)};$	[4]		
		Accept alternative methods.			
		Correct answers score [4].			
		Award [3] for $(+)202$ or $(+)40$ $(kJ/kJ mol^{-1})$.			
		-1(U) if units incorrect (ignore if absent).			
2.	(a)	(i) number of protons in the nucleus/atom; Do not accept protons and electrons.	[1]		
		(ii) number of protons and neutrons in the nucleus/atom;	[1]		
	(b)	$A_{\rm r}({\rm Tl}) = 203 \times 0.2952 + 205 \times 0.7048 / 204.41;$			
		$A_{\rm r}({\rm Br}) = 79 \times 0.5069 + 81 \times 0.4931/79.99;$			
		$M_{\rm r}({\rm TlBr}_3) = 204.41 + 3 \times 79.99 = 444.38/444.37;$	[3]		
		Correct answer scores [3].			
		Ignore units of g or g mol ⁻¹ . Apply ECF to M_r from A_r values.			
	(c)	$Mg^{2+};$	[1]		
	(d)	Al^{3+} , O^{2-} , Ne, Na ⁺ , F ⁻ , N ³⁻ :	[2]		
	()	$Do not accept Fl^-$	[-]		
		Award [2] for any three, [1] any two.			

(a) $n(Cu_2O) = 10.0 \times 10^3 \div 143.1 = 69.9 \text{ mol};$ 3. $n(Cu_2S) = 5.00 \times 10^3 \div 159.16 = 31.4$ mol; *Penalise failure to convert kg* \rightarrow *g once only.* Cu₂S is the limiting reagent; [3] ECF from above answers. (b) $n(Cu) = 6 \times n(Cu_2S) = 6 \times 31.4 = 188 \text{ mol};$ $m(Cu) = 188 \times 63.55 = 11900 - 12000 \text{ g} / 11.9 - 12.0 \text{ kg};$ [2] If Cu_2O given in (a), allow $3 \times n(Cu_2O)$ and $3 \times n(Cu_2O) \times 63.55$. Allow ECF from (a). 4. (a) (i) loss of electrons; [1] (ii) (a species that) gains electrons (from another species) / causes electron loss; [1] (b) changes by 3; reduced because its oxidation number decreased $/+6 \rightarrow +3/6+ \rightarrow 3+/$ it has gained electrons; [2] 5. same general formula; (a) successive members differ by CH₂; Do not allow elements or just "they". similar chemical properties; Allow same/constant. gradual change in physical properties; Do not allow change periodically. same functional group; [2 max] Award [1] each for any two. (b) add bromine (water); alkanes - no change / stays or turns brown; Allow red-brown or any combination of brown, orange or yellow. alkenes - bromine (water) decolorizes; Do not allow clear or discoloured. or add (acidified) KMnO₄;

-7-

alkanes – no change; alkenes – KMnO₄ decolorizes / brown / black;

[3]

SECTION B

6.	(a)	K / I Acce	$K_{c} = [SO_{3}]^{2} \div [SO_{2}]^{2}[O_{2}];$ <i>ppt correct</i> K_{p} <i>expression</i> .	[1]
	(b)	(i)	vanadium(V) oxide / (di)vanadium pentaoxide / V ₂ O ₅ ; Allow just vanadium oxide but not correct formula.	[1]
		(ii)	catalyst does not affect the value of K_c ; forward and reverse rates increase <u>equally/by the same factor</u> ; catalyst increases the rate of the reaction; (by providing an alternative path for the reaction with) lower activation energy;	[4]
	(c)	more more Do n	e energetic collisions / more molecules have energy greater than activation energy; e frequent collisions; not accept more collisions without reference to time.	[2]
	(d)	(i)	shifts equilibrium position to the products/right; to the side with fewer gas molecules or moles / lower volume of gas;	[2]
		(ii)	shifts equilibrium position to the products/right; to compensate for loss of SO_3 / produce more SO_3 ;	[2]
		(iii)	no effect; forward and backward rates increased equally / by the same factor;	[2]
	(e)	exothermic; K_{c} decreases with increasing temperature / back reaction favoured / heat used up / <i>OWTTE</i> ;		
	(f)	(i)	standard free energy change (of a reaction);	[1]
		(ii)	(reaction is) spontaneous / spontaneity of the reaction;	[1]
		(iii)	spontaneity would decrease; $-T\Delta S^{\ominus}$ becomes more positive and ΔG^{\ominus} becomes less negative/more positive / <i>OWTTE</i> ;	[2]

[3]

[4]

[4]

7.

- (a) (i) electron removed from higher energy level / further from nucleus / greater atomic radius;
 increased repulsion by extra inner shell electrons / increased shielding effect; [2]
 - (ii) Mg has twice as many / more delocalized electrons (compared to Na); the ionic charge is twice as big / greater in Mg (than Na); (electrostatic) attraction between ions and electrons is much greater;
 - (b) oxides of Na, Mg are basic Al is amphoteric Si, P, S and Cl are acidic
 Award 7 correct [3], 6/5 correct [2] and 4/3 correct [1].

$$SO_{2} + H_{2}O \rightarrow H_{2}SO_{3} / SO_{3} + H_{2}O \rightarrow H_{2}SO_{4} / P_{4}O_{10} + 6H_{2}O \rightarrow 4H_{3}PO_{4} / P_{4}O_{6} + 6H_{2}O \rightarrow 4H_{3}PO_{3};$$

$$Na_{2}O + H_{2}O \rightarrow 2NaOH / MgO + H_{2}O \rightarrow Mg(OH)_{2};$$
Accept equation using $P_{2}O_{3}$ or $P_{2}O_{5}$.
$$[5]$$

(c) (i)

Allow a combination of dots, crosses or lines. bent / V shaped / angular 104.5°; Accept answers in range 104° to 106°.

repulsion of the two non-bonding pairs of electrons forces bond angle to be smaller / non-bonding pairs repel more than bonding pairs;

- (ii) ethanol is polar and ethane is non-polar; ethanol forms hydrogen bonds / dipole–dipole attractions with water and ethane does not;
- (d) butane < propanone < propanol; butane has van der Waals' forces; *Accept vdW, dispersion or London forces or attractions between temporary dipoles.* propanone has dipole-dipole attractions; propanol has (the stronger) H-bonding;

-9-

8.	(a)	HCl/H ₂ SO ₄ /HNO ₃ / any strong acid;		
		$CH_3COOH/H_2CO_3/$ any weak acid;		
		Measure pH – the strong acid has the lower pH;		
		Accept universal indicator and two correct colours.		
		Measure (electrical) conductivity – this is greater for the stronger acid;		
		Add magnesium/carbonate – more gas bubbles with the stronger acid / Mg or carbonate		
		would disappear faster with stronger acid;	[5]	
	(b)	amphoteric/amphiprotic;		
		as an acid: $HCO_3^- + H_2O \rightarrow H_3O^+ + CO_3^{2-}/HCO_3^- \rightarrow H^+ + CO_3^{2-};$		
		as a base: $HCO_3^- + H_2O \rightarrow OH^- + H_2CO_3 / HCO_3^- + H^+ \rightarrow H_2CO_3$; accept $H_2O + CO_2$.	[3]	
	(c)	vinegar and factor of 10 ⁵ ;	[1]	
	(d)	weak acid + salt of weak acid / weak acid + conjugate base.		
		Accept equivalent descriptions of a basic buffer.		
		Do not accept pH does not change		
		when small amounts of acid or base are added:	[3]	
		Only award if previous answer correct.	[-]	
	(e)	(i) CH_2CH_2 ;	[1]	
			(1)	
		(II) $HOOCCHNH_2$	[1]	
		CH ₃		
		Allow appropriate acyl chloride.		
		(iii) H ₂ N(CH ₂), NH ₂ :		
		$HOOC(CH_{1}) COOH$	[2]	
		Allow correct alternative	[-]	
		Accept correct names as alternatives		
		If correct structure and incorrect name given, award the mark.		
		Penalise $COOH - C$ once only.		
	(f)	(addition polymore) contain $C - C/C = C$:		
	(1)	(condensation polymers) contain two reactive/functional groups:	[2]	
		(contendation porymers) contain two reactive/renotional groups,	["]	
	(g)	methyl methanoate;		
		HCOOCH ₃ ;	[2]	
		Accept other correct alternative.		