

CHEMISTRY STANDARD LEVEL PAPER 1

Monday 7 November 2005 (afternoon)

45 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

8805-6104 11 pages

1	7					•	The Po	The Periodic Table	: Table	ക		ю	4	w	9	٢	0
1 H 1.01				Atomic Number	Number												2 He 4.00
3 Li 6.94	4 Be 9.01			Element Atomic Mass	nent : Mass							5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31		•									13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 CI 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.90	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.71	29 Cu 63.55	30 Zn 65.37	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc 98.91	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.40	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 I 126.90	54 Xe 131.30
55 Cs 132.91	56 Ba 137.34	57 † La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.21	76 Os 190.21	77 Ir 192.22	78 Pt 195.09	79 Au 196.97	80 Hg 200.59	81 TI 204.37	82 Pb 207.19	83 Bi 208.98	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)															
		:-	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm 146.92	62 Sm 150.35	63 Eu 151.96	64 Gd 157.25	65 Tb 158.92	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97	
		**	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)	

1. The complete oxidation of propane produces carbon dioxide and water as shown below.

$$C_3H_8 + _O_2 \rightarrow _CO_2 + _H_2O$$

What is the total of the coefficients for the **products** in the balanced equation for 1 mole of propane?

- A. 6
- B. 7
- C. 12
- D. 13
- 2. The relative molecular mass (M_r) of a compound is 60. Which formulas are possible for this compound?
 - I. CH₃CH₂CH₂NH₂
 - II. CH,CH,CH,OH
 - III. CH₃CH(OH)CH₃
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- **3.** Which sample has the least number of atoms?
 - A. 1 mol of H₂SO₄
 - B. 1 mol of CH₃COOH
 - C. 2 mol of H₂O₂
 - D. 2 mol of NH₃

- **4.** Avogadro's constant has the same value as the number of
 - A. molecules in 1 mol of solid iodine.
 - B. atoms in 1 mol of chlorine gas.
 - C. ions in 1 mol of solid potassium bromide.
 - D. protons in 1 mol of helium gas.
- **5.** Information is given about four different atoms:

atom	neutrons	protons
W	22	18
X	18	20
Y	22	16
Z	20	18

Which **two** atoms are isotopes?

- A. W and Y
- B. W and Z
- C. X and Z
- D. X and Y
- **6.** Which statement is correct about a line emission spectrum?
 - A. Electrons absorb energy as they move from low to high energy levels.
 - B. Electrons absorb energy as they move from high to low energy levels.
 - C. Electrons release energy as they move from low to high energy levels.
 - D. Electrons release energy as they move from high to low energy levels.

7.	Whi	ch properties are typical of most non-metals in period 3 (Na to Ar)?						
		I. They form ions by gaining one or more electrons.						
		II. They are poor conductors of heat and electricity.						
		III. They have high melting points.						
	A.	I and II only						
	B.	B. I and III only						
	C.	II and III only						
	D.	I, II and III						
8.		otassium atom has a larger atomic radius than a sodium atom. Which statement about potassium ectly explains this difference?						
	A.	It has a larger nuclear charge.						
	B.	It has a lower electronegativity.						
	C.	It has more energy levels occupied by electrons.						
	D.	It has a lower ionization energy.						
9.		en the following bond types are listed in decreasing order of strength (strongest first), what is the ect order?						
	A.	covalent > hydrogen > van der Waals'						
	B.	covalent > van der Waals' > hydrogen						
	C.	hydrogen > covalent > van der Waals'						
	D.	van der Waals' > hydrogen > covalent						

8805-6104 **Turn over**

10. Which statement is true for most ionic compounds?	10.	Which	statement	is true	for mos	t ionic	compounds?
--	-----	-------	-----------	---------	---------	---------	------------

- A. They contain elements of similar electronegativity.
- B. They conduct electricity in the solid state.
- C. They are coloured.
- D. They have high melting and boiling points.

11. What is the valence shell electron pair repulsion (VSEPR) theory used to predict?

- A. The energy levels in an atom
- B. The shapes of molecules and ions
- C. The electronegativities of elements
- D. The type of bonding in compounds

12. Which fluoride is the most ionic?

- A. NaF
- B. CsF
- C. MgF,
- D. BaF,

13. Why are gases easily compressible?

- A. They have weak intermolecular forces.
- B. The particles have rapid, random motion.
- C. The particles are widely spaced.
- D. They do not have a fixed volume.

- 14. Why does the temperature of boiling water remain constant even though heat is supplied at a constant rate?
 - A. Heat is lost to the surroundings.
 - B. The heat is used to break the covalent bonds in the water molecules.
 - C. Heat is also taken in by the container.
 - D. The heat is used to overcome the intermolecular forces of attraction between water molecules.
- 15. The following equation shows the formation of magnesium oxide from magnesium metal.

$$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$$
 $\Delta H^{\oplus} = -1204kJ$

Which statement is correct for this reaction?

- A. 1204kJ of energy are released for every mol of magnesium reacted.
- B. 602kJ of energy are absorbed for every mol of magnesium oxide formed.
- C. 602kJ of energy are released for every mol of oxygen gas reacted.
- D. 1204kJ of energy are released for every two mol of magnesium oxide formed.
- **16.** The following equations show the oxidation of carbon and carbon monoxide to carbon dioxide.

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^{\oplus} = -x \text{ kJ mol}^{-1}$

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^{\Theta} = -y \text{ kJ mol}^{-1}$

What is the enthalpy change, in kJ mol⁻¹, for the oxidation of carbon to carbon monoxide?

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$$

- A. x + y
- B. -x-y
- C. v-x
- D. x-y

- 17. A simple calorimeter was used to determine the enthalpy of combustion of ethanol. The experimental value obtained was –920kJ mol⁻¹. The Data Booklet value is –1371kJ mol⁻¹. Which of the following best explains the difference between the two values?
 - A. incomplete combustion of the fuel.
 - B. heat loss to the surroundings.
 - C. poor ventilation in the laboratory.
 - D. inaccurate temperature measurements.
- **18.** What is the correct order of decreasing entropy for a pure substance?
 - A. gas > liquid > solid
 - B. solid > liquid > gas
 - C. solid > gas > liquid
 - D. liquid > solid > gas
- 19. Which statement is correct for a collision between reactant particles leading to a reaction?
 - A. Colliding particles must have different energy.
 - B. All reactant particles must have the same energy.
 - C. Colliding particles must have a kinetic energy higher than the activation energy.
 - D. Colliding particles must have the same velocity.
- **20.** Which change of condition will decrease the rate of the reaction between excess zinc granules and dilute hydrochloric acid?
 - A. increasing the amount of zinc
 - B. increasing the concentration of the acid
 - C. pulverize the zinc granules into powder
 - D. decreasing the temperature

21. Which changes will shift the position of equilibrium to the right in the following reaction?

$$2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)$$

- I. adding a catalyst
- II. decreasing the oxygen concentration
- III. increasing the volume of the container
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 22. Which statement is always true for a chemical reaction that has reached equilibrium?
 - A. The yield of product(s) is greater than 50 %.
 - B. The rate of the forward reaction is greater than the rate of the reverse reaction.
 - C. The amounts of reactants and products do not change.
 - D. Both forward and reverse reactions have stopped.
- **23.** Lime was added to a sample of soil and the pH changed from 4 to 6. What was the corresponding change in the hydrogen ion concentration?
 - A. increased by a factor of 2
 - B. increased by a factor of 100
 - C. decreased by a factor of 2
 - D. decreased by a factor of 100

- **24.** When the following 1.0 mol dm⁻³ solutions are listed in increasing order of pH (lowest first), what is the correct order?
 - A. $HNO_3 < H_2CO_3 < NH_3 < Ba(OH)_2$
 - B. $NH_3 < Ba(OH)_2 < H_2CO_3 < HNO_3$
 - C. $Ba(OH)_2 < H_2CO_3 < NH_3 < HNO_3$
 - D. $HNO_3 < H_2CO_3 < Ba (OH)_2 < NH_3$
- **25.** Which equations represent reactions that occur at room temperature?
 - I. $2 Br^{-}(aq) + Cl_{2}(aq) \rightarrow 2 Cl^{-}(aq) + Br_{2}(aq)$
 - II. $2 Br^{-}(aq) + I_{2}(aq) \rightarrow 2 I^{-}(aq) + Br_{2}(aq)$
 - III. $2I^{-}(aq) + Cl_{2}(aq) \rightarrow 2Cl^{-}(aq) + I_{2}(aq)$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- **26.** Which equation represents a redox reaction?
 - A. $KOH(aq) + HCl(aq) \rightarrow KCl(aq) + H_2O(l)$
 - B. $Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$
 - C. $CuO(s) + 2HCl(aq) \rightarrow CuCl_2(aq) + H_2O(l)$
 - D. $ZnCO_3(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + CO_2(g) + H_2O(l)$

27. The following information is given about reactions involving the metals X, Y and Z and solutions of their sulfates.

$$X(s) + YSO_4(aq) \rightarrow \text{no reaction}$$

 $Z(s) + YSO_4(aq) \rightarrow Y(s) + ZSO_4(aq)$

When the metals are listed in decreasing order of reactivity (most reactive first), what is the correct order?

- $A. \quad Z > Y > X$
- B. X > Y > Z
- C. Y > X > Z
- D. Y > Z > X
- **28.** How many structural isomers are possible with the molecular formula C_6H_{14} ?
 - A. 4
 - B. 5
 - C. 6
 - D. 7
- **29.** Proteins may be produced by condensation polymerisation of monomers. Which monomers are used in this reaction?
 - A. esters
 - B. carboxylic acids
 - C. amino acids
 - D. alkenes
- **30.** Which compound is a member of the aldehyde homologous series?
 - A. CH₃COCH₃
 - B. CH₃CH₂CH₂OH
 - C. CH₃CH₂COOH
 - D. CH₃CH₂CHO