

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

CHEMISTRY STANDARD LEVEL PAPER 1

Wednesday 17 November 2004 (afternoon)

45 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

7			4		-	The P	eriodic	c Table	e)		e	4	S	9	۲ ا	0
Atomic Nu	Atomic Nu	Atomic Nu Flemer	n Z	mber						L						2 He 4.00
4 Be).01 Atomic M ²	Atomic Ma	Atomic Ma	, Ma	ISS							5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
12 Mg 4.31											13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 CI 35.45	18 Ar 39.95
20 21 22 23 2 Ca Sc Ti V C 0.08 44.96 47.90 50.94 52	22 23 2 Ti V C 47.90 50.94 52	23 23 2 V C C 50.94 52	52 52	1 00	25 Mn 54.94	26 Fe 55.85	27 C0 58.93	28 Ni 58.71	29 Cu 63.55	30 Zn 65.37	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
38 39 40 41 42 Sr Y Zr Nb M 7.62 88.91 91.22 92.91 95.9	40 41 42 Zr Nb M 91.22 92.91 95.9	41 42 42 42 42 42 42 42 42 42 42 42 42 42	42 M	2 94	43 Tc 98.91	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.40	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 I 126.90	54 Xe 131.30
56 57 † 72 73 74 Ba La Hf Ta W W 37.34 138.91 178.49 180.95 183.8	72 73 74 Hf Ta W 178.49 180.95 183.8	73 74 Ta W 180.95 183.8	74 W 183.8	Ś	75 Re 186.21	76 Os 190.21	77 Ir 192.22	78 Pt 195.09	79 Au 196.97	80 Hg 200.59	81 TI 204.37	82 Pb 207.19	83 Bi 208.98	84 Po (210)	85 At (210)	86 Rn (222)
88 89 ‡ Ra Ac 226) (227)																
† 58 59 60 Ce Pr Nd 140.12 140.91 144.2	58 59 60 Ce Pr Nd 140.12 140.91 144.2	59 60 Pr Nd 144.2	60 Nd 144.7	54	61 Pm 146.92	62 Sm 150.35	63 Eu 151.96	64 Gd 157.25	65 Tb 158.92	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97	
\$ 90 91 92 Th Pa U 232.04 231.04 238.0	90 91 92 Th Pa U 232.04 231.04 238.0	91 92 92 92 0 02 231.04 238.0	92 U 238.0	3	93 N p (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (254)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)	

- 1. Which of the following contains the greatest number of molecules?
 - A. 1 g of CH₃Cl
 - B. 1 g of CH_2Cl_2
 - C. 1 g of CHCl₃
 - D. 1 g of CCl_4
- 2. Which of the following compounds has/have the empirical formula CH_2O ?
 - I. CH₃COOH
 - II. $C_6H_{12}O_6$
 - III. $C_{12}H_{22}O_{11}$
 - A. II only
 - B. III only
 - C. I and II only
 - D. II and III only
- **3.** Consider the equation below.

$$Fe(s) + S(s) \rightarrow FeS(s)$$

If 10.0 g of iron is heated with 10.0 g of sulfur to form iron(II) sulfide, what is the theoretical yield of FeS in grams?

A. 10.0 + 10.0B. $\frac{87.91 \times 10.0}{55.85}$ C. $\frac{87.91 \times 10.0}{32.06}$ D $\frac{55.85 \times 10.0}{32.06}$

- 4. Assuming complete reaction, what volume of 0.200 moldm⁻³ HCl(aq) is required to neutralize 25.0 cm³ of 0.200 moldm⁻³ Ba(OH)₂(aq)?
 - A. 12.5 cm^3
 - B. 25.0 cm^3
 - C. 50.0 cm^3
 - D. 75.0 cm^3
- 5. A certain sample of element Z contains 60% of ${}^{69}Z$ and 40% of ${}^{71}Z$. What is the relative atomic mass of element Z in this sample?
 - A. 69.2
 - B. 69.8
 - C. 70.0
 - D. 70.2
- 6. What is the difference between two neutral atoms represented by the symbols ${}^{59}_{27}$ Co and ${}^{59}_{28}$ Ni?
 - A. The number of neutrons only.
 - B. The number of protons and electrons only.
 - C. The number of protons and neutrons only.
 - D. The number of protons, neutrons and electrons.
- 7. Rubidium is an element in the same group of the periodic table as lithium and sodium. It is likely to be a metal which has a
 - A. high melting point and reacts slowly with water.
 - B. high melting point and reacts vigorously with water.
 - C. low melting point and reacts vigorously with water.
 - D. low melting point and reacts slowly with water.

8. When the following species are arranged in order of increasing radius, what is the correct order?

- A. Cl^{-}, Ar, K^{+}
- B. K^+ , Ar, Cl^-
- $C. \quad Cl^-, K^+, Ar$
- D. Ar, Cl^- , K^+

9. According to VSEPR theory, repulsion between electron pairs in a valence shell decreases in the order

- A. lone pair-lone pair > lone pair-bond pair > bond pair-bond pair.
- B. bond pair-bond pair > lone pair- bond pair > lone pair-lone pair.
- C. lone pair-lone pair > bond pair-bond pair > bond pair-lone pair.
- D. bond pair-bond pair > lone pair-lone pair > lone pair-bond pair.

10. Which molecule is linear?

- A. SO₂
- B. CO₂
- C. H₂S
- D. Cl_2O
- 11. Why is the boiling point of PH_3 lower than that of NH_3 ?
 - A. PH_3 is non-polar whereas NH_3 is polar.
 - B. PH_3 is not hydrogen bonded whereas NH_3 is hydrogen bonded.
 - C. Van der Waals' forces are weaker in PH_3 than in NH_3 .
 - D. The molar mass of PH_3 is greater than that of NH_3 .

- **12.** Which molecule is non-polar?
 - A. H₂CO
 - B. SO₃
 - C. NF₃
 - D. CHCl₃
- 13. Under what conditions would one mole of methane gas, CH_4 , occupy the smallest volume?

- 6 -

- A. $273 \text{ K} \text{ and } 1.01 \times 10^5 \text{ Pa}$
- B. 273 K and 2.02×10^5 Pa
- C. 546 K and 1.01×10^5 Pa
- D. 546 K and 2.02×10^5 Pa
- 14. The temperature in Kelvin of 2.0 dm³ of an ideal gas is doubled and its pressure is increased by a factor of four. What is the final volume of the gas?
 - A. 1.0 dm³
 - B. 2.0 dm³
 - C. 3.0 dm³
 - D. 4.0 dm^3

N04/4/CHEMI/SPM/ENG/TZ0/XX

15. Consider the following equations.

$$\begin{split} \mathrm{Mg}(\mathrm{s}) + &\frac{1}{2}\mathrm{O}_{2}(\mathrm{g}) \to \mathrm{MgO}(\mathrm{s}) \qquad \Delta H^{\ominus} = -602 \ \mathrm{kJ} \\ \mathrm{H}_{2}(\mathrm{g}) + &\frac{1}{2}\mathrm{O}_{2}(\mathrm{g}) \to \mathrm{H}_{2}\mathrm{O}(\mathrm{g}) \qquad \Delta H^{\ominus} = -242 \ \mathrm{kJ} \end{split}$$

What is the ΔH^{Θ} value (in kJ) for the following reaction?

$$MgO(s) + H_2(g) \rightarrow Mg(s) + H_2O(g)$$

A. – 844

B. - 360

- C. + 360
- D. +844

16. For which of the following is the sign of the enthalpy change different from the other three?

- A. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
- B. $\operatorname{Na}(g) \rightarrow \operatorname{Na}^+(g) + e^-$
- C. $CO_2(s) \rightarrow CO_2(g)$
- D. $2Cl(g) \rightarrow Cl_2(g)$
- 17. Which reaction has a positive entropy change, ΔS^{\ominus} ?
 - A. $H_2O(g) \rightarrow H_2O(l)$
 - B. $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$
 - C. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
 - D. $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

- 18. Separate solutions of HCl(aq) and $H_2SO_4(aq)$ of the same concentration and same volume were completely neutralized by NaOH(aq). *X*kJ and *Y*kJ of heat were evolved respectively. Which statement is correct?
 - A. X = Y
 - B. Y = 2X
 - C. X = 2Y
 - D. Y = 3X
- **19.** For a given reaction, why does the rate of reaction increase when the concentrations of the reactants are increased?
 - A. The frequency of the molecular collisions increases.
 - B. The activation energy increases.
 - C. The average kinetic energy of the molecules increases.
 - D. The rate constant increases.
- 20. Which statement is correct for the reaction below?

 $4P + Q \rightarrow 2R + 2S$

- A. The rate of formation of R is one half the rate of the disappearance of Q.
- B. The rate of disappearance of Q is one quarter of the rate of disappearance of P.
- C. The rates of formation of R and S are not equal.
- D. The rate of formation of S is double the rate of disappearance of P.
- 21. In the Haber process for the synthesis of ammonia, what effects does the catalyst have?

	Rate of formation of NH ₃ (g)	Amount of NH ₃ (g) formed
A.	Increases	Increases
B.	Increases	Decreases
C.	Increases	No change
D.	No change	Increases

22. What will happen if $CO_2(g)$ is allowed to escape from the following reaction mixture at equilibrium?

 $CO_2(g) + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$

- A. The pH will decrease.
- B. The pH will increase.
- C. The pH will remain constant.
- D. The pH will become zero.
- **23.** Consider the following equilibria in 0.10 mol dm^{-3} carbonic acid.

 $H_{2}CO_{3}(aq) \rightleftharpoons H^{+}(aq) + HCO_{3}^{-}(aq)$ $HCO_{3}^{-}(aq) \rightleftharpoons H^{+}(aq) + CO_{3}^{2-}(aq)$

Which species is present in the highest concentration?

- A. $H_2CO_3(aq)$
- B. $H^+(aq)$
- C. $HCO_3^-(aq)$
- D. $CO_3^{2-}(aq)$
- **24.** The pH of a solution is 2. If its pH is increased to 6, how many times greater is the [H⁺] of the original solution?
 - A. 3
 - B. 4
 - C. 1000
 - D. 10000

25. Consider the following reaction.

$$H_2SO_3(aq) + Sn^{4+}(aq) + H_2O(l) \rightarrow Sn^{2+}(aq) + HSO_4^{-}(aq) + 3H^{+}(aq)$$

Which statement is correct?

- A. H_2SO_3 is the reducing agent because it undergoes reduction.
- B. H_2SO_3 is the reducing agent because it undergoes oxidation.
- C. Sn^{4+} is the oxidizing agent because it undergoes oxidation.
- D. Sn^{4+} is the reducing agent because it undergoes oxidation.
- **26.** In which change does oxidation occur?
 - A. $CH_3CHO \rightarrow CH_3CH_2OH$
 - B. $\operatorname{CrO}_{4}^{2-} \rightarrow \operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}$
 - C. $SO_4^{2-} \rightarrow SO_3^{2-}$
 - D. $NO_2^- \rightarrow NO_3^-$

	Voltaic cell	Electrolytic cell
A.	Oxidation	Reduction
B.	Reduction	Oxidation
C.	Oxidation	Oxidation
D.	Reduction	Reduction

27. What happens at the positive electrode in a voltaic cell and in an electrolytic cell?

- 28. Which compound has the lowest boiling point?
 - A. CH₃CH₂CH(CH₃)CH₃
 - B. $(CH_3)_4C$
 - C. CH₃CH₂CH₂CH₂CH₃
 - D. CH₃CH₂OCH₂CH₃
- **29.** Which species will show optical activity?
 - A. 1-chloropentane
 - B. 3-chloropentane
 - C. 1-chloro-2-methylpentane
 - D. 2-chloro-2-methylpentane
- **30.** What type of reaction does the equation below represent?

 $CH_2 = CH_2 + Br_2 \rightarrow BrCH_2CH_2Br$

- A. substitution
- B. condensation
- C. reduction
- D. addition