CHEMISTRY
 STANDARD LEVEL
 PAPER 1

Wednesday 17 November 2004 (afternoon)
45 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

1. Which of the following contains the greatest number of molecules?
A. 1 g of $\mathrm{CH}_{3} \mathrm{Cl}$
B. 1 g of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
C. 1 g of CHCl_{3}
D. 1 g of CCl_{4}
2. Which of the following compounds has/have the empirical formula $\mathrm{CH}_{2} \mathrm{O}$?
I. $\mathrm{CH}_{3} \mathrm{COOH}$
II. $\quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
III. $\quad \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
A. II only
B. III only
C. I and II only
D. II and III only
3. Consider the equation below.

$$
\mathrm{Fe}(\mathrm{~s})+\mathrm{S}(\mathrm{~s}) \rightarrow \mathrm{FeS}(\mathrm{~s})
$$

If 10.0 g of iron is heated with 10.0 g of sulfur to form iron(II) sulfide, what is the theoretical yield of FeS in grams?
A. $10.0+10.0$
B. $\frac{87.91 \times 10.0}{55.85}$
C. $\frac{87.91 \times 10.0}{32.06}$

D $\frac{55.85 \times 10.0}{32.06}$
4. Assuming complete reaction, what volume of $0.200 \mathrm{moldm}^{-3} \mathrm{HCl}(\mathrm{aq})$ is required to neutralize $25.0 \mathrm{~cm}^{3}$ of $0.200 \mathrm{moldm}^{-3} \mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$?
A. $\quad 12.5 \mathrm{~cm}^{3}$
B. $25.0 \mathrm{~cm}^{3}$
C. $\quad 50.0 \mathrm{~cm}^{3}$
D. $\quad 75.0 \mathrm{~cm}^{3}$
5. A certain sample of element Z contains 60% of ${ }^{69} Z$ and 40% of ${ }^{71} Z$. What is the relative atomic mass of element Z in this sample?
A. 69.2
B. 69.8
C. 70.0
D. 70.2
6. What is the difference between two neutral atoms represented by the symbols ${ }_{27}^{59} \mathrm{Co}$ and ${ }_{28}^{59} \mathrm{Ni}$?
A. The number of neutrons only.
B. The number of protons and electrons only.
C. The number of protons and neutrons only.
D. The number of protons, neutrons and electrons.
7. Rubidium is an element in the same group of the periodic table as lithium and sodium. It is likely to be a metal which has a
A. high melting point and reacts slowly with water.
B. high melting point and reacts vigorously with water.
C. low melting point and reacts vigorously with water.
D. low melting point and reacts slowly with water.
8. When the following species are arranged in order of increasing radius, what is the correct order?
A. $\mathrm{Cl}^{-}, \mathrm{Ar}, \mathrm{K}^{+}$
B. $\mathrm{K}^{+}, \mathrm{Ar}, \mathrm{Cl}^{-}$
C. $\mathrm{Cl}^{-}, \mathrm{K}^{+}, \mathrm{Ar}$
D. $\mathrm{Ar}, \mathrm{Cl}^{-}, \mathrm{K}^{+}$
9. According to VSEPR theory, repulsion between electron pairs in a valence shell decreases in the order
A. lone pair-lone pair > lone pair-bond pair > bond pair-bond pair.
B. bond pair-bond pair > lone pair- bond pair > lone pair-lone pair.
C. lone pair-lone pair $>$ bond pair-bond pair $>$ bond pair-lone pair.
D. bond pair-bond pair $>$ lone pair-lone pair $>$ lone pair-bond pair.
10. Which molecule is linear?
A. SO_{2}
B. CO_{2}
C. $\mathrm{H}_{2} \mathrm{~S}$
D. $\mathrm{Cl}_{2} \mathrm{O}$
11. Why is the boiling point of PH_{3} lower than that of NH_{3} ?
A. PH_{3} is non-polar whereas NH_{3} is polar.
B. PH_{3} is not hydrogen bonded whereas NH_{3} is hydrogen bonded.
C. Van der Waals' forces are weaker in PH_{3} than in NH_{3}.
D. The molar mass of PH_{3} is greater than that of NH_{3}.
12. Which molecule is non-polar?
A. $\mathrm{H}_{2} \mathrm{CO}$
B. SO_{3}
C. NF_{3}
D. CHCl_{3}
13. Under what conditions would one mole of methane gas, CH_{4}, occupy the smallest volume?
A. $\quad 273 \mathrm{~K}$ and $1.01 \times 10^{5} \mathrm{~Pa}$
B. 273 K and $2.02 \times 10^{5} \mathrm{~Pa}$
C. $\quad 546 \mathrm{~K}$ and $1.01 \times 10^{5} \mathrm{~Pa}$
D. 546 K and $2.02 \times 10^{5} \mathrm{~Pa}$
14. The temperature in Kelvin of $2.0 \mathrm{dm}^{3}$ of an ideal gas is doubled and its pressure is increased by a factor of four. What is the final volume of the gas?
A. $\quad 1.0 \mathrm{dm}^{3}$
B. $\quad 2.0 \mathrm{dm}^{3}$
C. $\quad 3.0 \mathrm{dm}^{3}$
D. $4.0 \mathrm{dm}^{3}$
15. Consider the following equations.

$$
\begin{array}{ll}
\mathrm{Mg}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgO}(\mathrm{~s}) & \Delta H^{\ominus}=-602 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta H^{\ominus}=-242 \mathrm{~kJ}
\end{array}
$$

What is the ΔH^{\ominus} value (in kJ) for the following reaction?

$$
\mathrm{MgO}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Mg}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

A. -844
B. -360
C. +360
D. +844
16. For which of the following is the sign of the enthalpy change different from the other three?
A. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
B. $\quad \mathrm{Na}(\mathrm{g}) \rightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{e}^{-}$
C. $\mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
D. $2 \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})$
17. Which reaction has a positive entropy change, ΔS^{\ominus} ?
A. $\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
C. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
D. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
18. Separate solutions of $\mathrm{HCl}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ of the same concentration and same volume were completely neutralized by $\mathrm{NaOH}(\mathrm{aq}) . X \mathrm{~kJ}$ and $Y \mathrm{~kJ}$ of heat were evolved respectively. Which statement is correct?
A. $\quad X=Y$
B. $Y=2 X$
C. $X=2 Y$
D. $\quad Y=3 X$
19. For a given reaction, why does the rate of reaction increase when the concentrations of the reactants are increased?
A. The frequency of the molecular collisions increases.
B. The activation energy increases.
C. The average kinetic energy of the molecules increases.
D. The rate constant increases.
20. Which statement is correct for the reaction below?

$$
4 \mathrm{P}+\mathrm{Q} \rightarrow 2 \mathrm{R}+2 \mathrm{~S}
$$

A. The rate of formation of R is one half the rate of the disappearance of Q .
B. The rate of disappearance of Q is one quarter of the rate of disappearance of P .
C. The rates of formation of R and S are not equal.
D. The rate of formation of S is double the rate of disappearance of P.
21. In the Haber process for the synthesis of ammonia, what effects does the catalyst have?

	Rate of formation of $\mathbf{N H}_{\mathbf{3}} \mathbf{(g)}$	Amount of $\mathbf{N H}_{\mathbf{3}} \mathbf{(g)}$ formed
A.	Increases	Increases
B.	Increases	Decreases
C.	Increases	No change
D.	No change	Increases

22. What will happen if $\mathrm{CO}_{2}(\mathrm{~g})$ is allowed to escape from the following reaction mixture at equilibrium?

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})
$$

A. The pH will decrease.
B. The pH will increase.
C. The pH will remain constant.
D. The pH will become zero.
23. Consider the following equilibria in $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ carbonic acid.

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) & \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \\
\mathrm{HCO}_{3}^{-}(\mathrm{aq}) & \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq})
\end{aligned}
$$

Which species is present in the highest concentration?
A. $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$
B. $\mathrm{H}^{+}(\mathrm{aq})$
C. $\mathrm{HCO}_{3}^{-}(\mathrm{aq})$
D. $\mathrm{CO}_{3}^{2-}(\mathrm{aq})$
24. The pH of a solution is 2 . If its pH is increased to 6 , how many times greater is the $\left[\mathrm{H}^{+}\right]$of the original solution?
A. 3
B. 4
C. 1000
D. 10000
25. Consider the following reaction.

$$
\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{Sn}^{4+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})
$$

Which statement is correct?
A. $\quad \mathrm{H}_{2} \mathrm{SO}_{3}$ is the reducing agent because it undergoes reduction.
B. $\mathrm{H}_{2} \mathrm{SO}_{3}$ is the reducing agent because it undergoes oxidation.
C. Sn^{4+} is the oxidizing agent because it undergoes oxidation.
D. Sn^{4+} is the reducing agent because it undergoes oxidation.
26. In which change does oxidation occur?
A. $\mathrm{CH}_{3} \mathrm{CHO} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
B. $\mathrm{CrO}_{4}^{2-} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
C. $\mathrm{SO}_{4}^{2-} \rightarrow \mathrm{SO}_{3}^{2-}$
D. $\mathrm{NO}_{2}^{-} \rightarrow \mathrm{NO}_{3}^{-}$
27. What happens at the positive electrode in a voltaic cell and in an electrolytic cell?
A.

Voltaic cell	Electrolytic cell
Oxidation	Reduction
Reduction	Oxidation
Oxidation	Oxidation
Reduction	Reduction

28. Which compound has the lowest boiling point?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$
B. $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{C}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
29. Which species will show optical activity?
A. 1-chloropentane
B. 3-chloropentane
C. 1-chloro-2-methylpentane
D. 2-chloro-2-methylpentane
30. What type of reaction does the equation below represent?

$$
\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{Br}_{2} \rightarrow \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Br}
$$

A. substitution
B. condensation
C. reduction
D. addition

