CHEMISTRY
 STANDARD LEVEL
 PAPER 1

Monday 18 November 2002 (afternoon)
45 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
Periodic Table

$\begin{gathered} 1 \\ \mathbf{H} \\ 1.01 \end{gathered}$				Atomic Number Atomic Mass													$\begin{gathered} 2 \\ \text { He } \\ 4.00 \end{gathered}$
$\begin{gathered} 3 \\ \mathbf{L i} \\ 6.94 \end{gathered}$	$\begin{gathered} 4 \\ \text { Be } \\ 9.01 \end{gathered}$											$\begin{gathered} 5 \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\begin{gathered} 6 \\ \mathbf{C} \\ 12.01 \end{gathered}$	$\stackrel{7}{\mathbf{~}} \underset{14.01}{ }$	$\begin{gathered} 8 \\ \mathbf{0} \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} 10 \\ \mathbf{N e} \\ 20.18 \end{gathered}$
$\begin{gathered} 11 \\ \mathbf{N a} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$											$\begin{gathered} 13 \\ \mathbf{A l} \\ 26.98 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{S i} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.06 \end{gathered}$	$\begin{gathered} 17 \\ \mathbf{C l} \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.95 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \mathbf{S c} \\ 44.96 \end{gathered}$	$\begin{gathered} 22 \\ \mathbf{T i} \\ 47.90 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ 52.00 \end{gathered}$	$\begin{gathered} 25 \\ \text { Mn } \\ 54.94 \end{gathered}$	$\begin{gathered} 26 \\ \mathbf{F e} \\ 55.85 \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ 58.93 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.71 \end{gathered}$	$\begin{gathered} 29 \\ \mathbf{C u} \\ 63.55 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.37 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{G e} \\ 72.59 \end{gathered}$	$\begin{gathered} 33 \\ \mathbf{A s} \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \mathbf{S e} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
$\begin{gathered} 37 \\ \mathbf{R b} \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ 92.91 \end{gathered}$	$\begin{gathered} 42 \\ \text { Mo } \\ 95.94 \end{gathered}$	$\begin{gathered} 43 \\ \text { Tc } \\ 98.91 \end{gathered}$	$\begin{gathered} 44 \\ \mathbf{R u} \\ 101.07 \end{gathered}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.42 \end{gathered}$	$\begin{gathered} 47 \\ \mathbf{A g} \\ 107.87 \end{gathered}$	$\begin{gathered} 48 \\ \mathbf{C d} \\ 112.40 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ 118.69 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.75 \end{gathered}$	$\begin{gathered} 52 \\ \mathbf{T e} \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ 126.90 \end{gathered}$	$\begin{gathered} 54 \\ \mathbf{X e} \\ 131.30 \end{gathered}$
$\begin{array}{\|c\|} 55 \\ \text { Cs } \\ 132.91 \end{array}$	$\begin{gathered} 56 \\ \mathbf{B a} \\ 137.34 \end{gathered}$	$\begin{gathered} 57 \dagger \\ \mathbf{L a} \\ 138.91 \end{gathered}$	$\begin{gathered} 72 \\ \mathbf{H f} \\ 178.49 \end{gathered}$	$\begin{gathered} 73 \\ \mathbf{T a} \\ 180.95 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.85 \end{gathered}$	$\begin{gathered} 75 \\ \mathbf{R e} \\ 186.21 \end{gathered}$	$\begin{gathered} 76 \\ \mathbf{O s} \\ 190.21 \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.22 \end{gathered}$	$\begin{gathered} 78 \\ \mathbf{P t} \\ 195.09 \end{gathered}$	$\begin{gathered} 79 \\ \mathbf{A u} \\ 196.97 \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{gathered} 81 \\ \mathbf{T l} \\ 204.37 \end{gathered}$	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.19 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \mathbf{P o} \\ (210) \end{gathered}$	$\begin{gathered} 85 \\ \mathbf{A t} \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathbf{F r} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathbf{R a} \\ (226) \end{gathered}$	$\begin{gathered} 89 \ddagger \\ \mathbf{A c} \\ (227) \end{gathered}$	$\begin{gathered} 104 \\ \mathbf{R f} \\ (261) \end{gathered}$	$\begin{gathered} 105 \\ \mathbf{D b} \\ (262) \end{gathered}$	$\begin{gathered} 106 \\ \mathbf{S g} \\ (263) \end{gathered}$	$\begin{gathered} 107 \\ \text { Bh } \\ (262) \end{gathered}$	$\begin{gathered} 108 \\ \mathbf{H s} \end{gathered}$	$\begin{aligned} & 109 \\ & \mathbf{M t} \end{aligned}$									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	146.92	150.35	151.96	157.25	158.92	162.50	164.93	167.26	168.93	173.04	174.97

90													
$\mathbf{T h}$													
$\mathbf{T h} .04$	91 $\mathbf{P a}$ 231.04	92 \mathbf{U} 238.03	93 $\mathbf{N p}$ (237)	94 $\mathbf{P u}$ (242)	95 $\mathbf{A m}$ (243)	96 $\mathbf{C m}$ (247)	97 $\mathbf{B k}$ (247)	98 $\mathbf{C f}$ (251)	99 $\mathbf{E s}$ (254)	100 $\mathbf{F m}$ (257)	101 $\mathbf{M d}$ (258)	102 $\mathbf{N o}$ (259)	103 $\mathbf{L r}$ (260)

1. How many molecules are present in a drop of water of mass $9.00 \times 10^{-2} \mathrm{~g}$?
A. 3.01×10^{21}
B. 3.01×10^{22}
C. 9.75×10^{23}
D. 1.20×10^{26}
2. What amount of $\mathrm{H}_{2}(\mathrm{~g})$ is produced when 12 g of magnesium reacts completely with dilute $\mathrm{HCl}(\mathrm{aq})$?

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

A. $\quad \frac{1}{4} \mathrm{~mol}$
B. $\frac{1}{2} \mathrm{~mol}$
C. 1 mol
D. 2 mol
3. What amount (in moles) of $\mathrm{FeS}_{2}(\mathrm{~s})$ are required to produce $64 \mathrm{~g}^{\text {of } \mathrm{SO}_{2}(\mathrm{~g}) \text { according to the following equation? }}$

$$
4 \mathrm{FeS}_{2}(\mathrm{~s})+11 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+8 \mathrm{SO}_{2}(\mathrm{~g})
$$

A. 0.40
B. 0.50
C. 1.0
D. 2.0
4. An oxide of metal M contains 40% by mass of oxygen. The metal has a relative atomic mass of 24 . What is the empirical formula of the oxide?
A. $\mathrm{M}_{2} \mathrm{O}_{3}$
B. $\mathrm{M}_{2} \mathrm{O}$
C. $\quad \mathrm{MO}_{2}$
D. MO
5. $25.0 \mathrm{~cm}^{3}$ of $2.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HNO}_{3}(\mathrm{aq})$ reacts completely with $20.0 \mathrm{~cm}^{3}$ of $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$. What is the concentration of barium hydroxide solution?
A. $\quad 0.800 \mathrm{~mol} \mathrm{dm}^{-3}$
B. $\quad 1.25 \mathrm{~mol} \mathrm{dm}^{-3}$
C. $\quad 2.00 \mathrm{~mol} \mathrm{dm}^{-3}$
D. $\quad 2.50 \mathrm{~mol} \mathrm{dm}^{-3}$
6. Isotopes are elements with
A. the same atomic number and the same number of neutrons.
B. the same mass number but a different number of neutrons.
C. the same atomic number but a different number of neutrons.
D. different atomic and mass numbers but the same number of neutrons.
7. Which two species contain the same number of neutrons?
A. ${ }^{55} \mathrm{Mn}$ and ${ }^{56} \mathrm{Fe}$
B. ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$
C. $\quad{ }^{23} \mathrm{Na}$ and ${ }^{39} \mathrm{~K}$
D. ${ }^{32} \mathrm{~S}$ and ${ }^{35} \mathrm{Cl}$
8. On descending a group in the periodic table,
I. all the atoms have the same number of valence electrons.
II. ionization energy increases.
III. electronegativity decreases.

Which of the above statements are correct?
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
9. Which of the following displacement reactions is possible?
A. $\quad \mathrm{Br}_{2}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{aq})$
B. $\quad \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{aq})$
C. $\mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})$
D. $\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{Br}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{aq})$
10. An element E of mass number 40 has the electronic configuration 2. 8. 8. 2. Which statement regarding this element is not correct?
A. It belongs to group 2 of the periodic table.
B. It has 20 neutrons.
C. It belongs to the period 4 of the periodic table.
D. The formula of its oxide is EO_{2}.
11. Which intermolecular forces exist in dry ice, $\mathrm{CO}_{2}(\mathrm{~s})$?
A. Covalent bonds
B. Dipole-dipole attractions
C. Van der Waals' forces
D. Hydrogen bonds
12. Which has the smallest bond angle?
A. NH_{3}
B. CO_{2}
C. $\mathrm{H}_{2} \mathrm{O}$
D. CH_{4}
13. Which of the compounds $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}$ and $\mathrm{H}_{2} \mathrm{Te}$ has the highest boiling point?
A. $\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{~S}$
C. $\mathrm{H}_{2} \mathrm{Se}$
D. $\mathrm{H}_{2} \mathrm{Te}$
14. Which molecule is non-polar?
A. CIF
B. PF_{3}
C. CF_{4}
D. CFCl_{3}
15. Under what conditions would a given mass of oxygen gas occupy the greatest volume?
A. High temperature and high pressure
B. High temperature and low pressure
C. Low temperature and low pressure
D. Low temperature and high pressure
16. Consider the following reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta H^{\ominus}=?
$$

Bond enthalpies (in $\mathrm{kJ} \mathrm{mol}^{-1}$) involved in the reaction are

$\mathrm{N} \equiv \mathrm{N}$	x
$\mathrm{H}-\mathrm{H}$	y
$\mathrm{~N}-\mathrm{H}$	z

Which calculation will give the value of ΔH^{\ominus} ?
A. $x+3 y-6 z$
B. $6 z-x+3 y$
C. $x-3 y+6 z$
D. $x+3 y-2 z$
17. Consider the following reactions:

$$
\begin{aligned}
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} & \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} & \Delta H^{\ominus} & =\mathrm{q}_{1} \mathrm{~kJ} \\
\mathrm{H}^{+}+\mathrm{OH}^{-} & \rightarrow \mathrm{H}_{2} \mathrm{O} & \Delta H^{\ominus} & =\mathrm{q}_{2} \mathrm{~kJ}
\end{aligned}
$$

What is the enthalpy change for the reaction below?

$$
\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}
$$

A. $\mathrm{q}_{2}-\mathrm{q}_{1}$
B. $\mathrm{q}_{1}-\mathrm{q}_{2}$
C. $-q_{1}-q_{2}$
D. $2 q_{2}-q_{1}$
18. If 3600 J of heat is added to 180 g of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})$, its temperature increases from $18.5^{\circ} \mathrm{C}$ to $28.5{ }^{\circ} \mathrm{C}$. What is the specific heat capacity of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})$?
A. $\quad 0.500 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$

B $\quad 2.00 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$
C. $\quad 20.0 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$
D. $\quad 200 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$
19. In general, the rate of a reaction can be increased by all of the following except
A. increasing the temperature.
B. increasing the activation energy.
C. increasing the concentration of reactants.
D. increasing the surface area of the reactants.
20. Under what conditions is the rate of reaction of magnesium with $\mathrm{HCl}(\mathrm{aq})$ fastest?
A. $\quad 10 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$ at $25^{\circ} \mathrm{C}$
B. $\quad 10 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$ at $25^{\circ} \mathrm{C}$
C. $\quad 10 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$ at $35^{\circ} \mathrm{C}$
D. $\quad 10 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$ at $35^{\circ} \mathrm{C}$
21. The volume of the reaction vessel containing the following equilibrium mixture

$$
\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

is increased. When equilibrium is re-established, which of the following will occur?
A. The amount of $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ will have increased.
B. The amount of $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ will have decreased.
C. The amount of $\mathrm{Cl}_{2}(\mathrm{~g})$ will remain unchanged.
D. The amount of $\mathrm{Cl}_{2}(\mathrm{~g})$ will have decreased.
22. In which reaction does the position of equilibrium remain unaffected by change in pressure?
A. $\quad 2 \mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{O}_{2}(\mathrm{~g})$
B. $\quad 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
C. $\quad 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{g})$
D. $\quad \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$
23. When the following $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ solutions are arranged in order of increasing pH (lowest first), what is the correct order?

$$
\mathrm{NH}_{3}(\mathrm{aq}), \quad \mathrm{NaOH}(\mathrm{aq}), \quad \mathrm{HCl}(\mathrm{aq}), \quad \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})
$$

A. $\mathrm{NaOH}, \mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{HCl}$
B. $\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{NH}_{3}, \mathrm{NaOH}$
C. $\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{NaOH}, \mathrm{NH}_{3}$
D. $\mathrm{NaOH}, \mathrm{NH}_{3}, \mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COOH}$
24. Consider a weak acid HA dissolved in water:

$$
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

Which statements are correct?
I. $\quad \mathrm{A}^{-}(\mathrm{aq})$ is a much stronger base than $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$.
II. HA dissociates only to a very small extent in aqueous solution.
III. The concentration of $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ is much greater than the concentration of $\mathrm{HA}(\mathrm{aq})$.
A. I, II and III
B. II and III only
C. I and II only
D. I and III only
25. In the reaction

$$
3 \mathrm{Br}_{2}+6 \mathrm{CO}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}+6 \mathrm{HCO}_{3}^{-}
$$

A. $\quad \mathrm{Br}_{2}$ is only oxidised.
B. Br_{2} is only reduced.
C. $\quad \mathrm{Br}_{2}$ is neither oxidised nor reduced.
D. Br_{2} is both oxidised and reduced.
26. Consider the following statements regarding electrolysis of molten lead(II) bromide.
I. Oxidation takes place at the anode where lead ions gain electrons.

II Reduction takes place at the cathode where lead ions gain electrons.
III Oxidation takes place at the anode where bromide ions lose electrons.
IV. Reduction takes place at the cathode where bromide ions lose electrons.

Which of the above statements are correct?
A. I and II only
B. I and IV only
C. II and III only
D. II and IV only
27. A compound with the empirical formula $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ has a relative molecular mass of 88 . What is the formula of the compound?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{COOH}$
C. HCOOCH_{3}
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
28. Consider the following reaction.
heat
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{COONH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{CONH}_{2}$
What will be the final product if aminoethane (ethylamine) is used instead of NH_{3} ?
A. $\mathrm{CH}_{3} \mathrm{CONHCH}_{2} \mathrm{CH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{CONHCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
D. $\mathrm{CH}_{3} \mathrm{CONH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
29. Statement (S): Solubility of alkanols in water decreases with increase in M_{r}.

Explanation (E): The relative proportion of the hydrocarbon part in alkanol increases with increasing M_{r}.
A. Both S and E are true.
B. Both S and E are false.
C. S is true but E is false.
D. S is false but E is true.
30. Which of the following compounds is optically active?
A. $\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{COOH}$
B. $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}-\mathrm{COOH}$
C.

D.

