CHEMISTRY STANDARD LEVEL PAPER 1

Monday 18 November 2002 (afternoon)

45 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

882-161 12 pages

U	
$\overline{}$	
9	
=	
_ದ	
\Box	
Γ,	
•)	
<u>:</u>	
=	
7	
0	
.=	
•	
a	
$\mathbf{\Psi}$	

2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.80	54 Xe 131.30	86 Rn (222)	
	9 F 19.00	17 CI 35.45	35 Br 79.90	53 I 126.90	85 At (210)	
	8 O 16.00	16 S 32.06	34 Se 78.96	52 Te 127.60	84 Po (210)	
	7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.75	83 Bi 208.98	
	6 C 12.01	14 Si 28.09	32 Ge 72.59	50 Sn 118.69	82 Pb 207.19	
	5 B 10.81	13 Al 26.98	31 Ga 69.72		81 TI 204.37	
			30 Zn 65.37	48 Cd 112.40	80 Hg 200.59	
			29 Cu 63.55	47 Ag 107.87	79 Au 196.97	
			28 Ni 58.71	46 Pd 106.42	78 Pt 195.09	
			27 Co 58.93	45 Rh 102.91	77 Ir 192.22	109 Mt
			26 Fe 55.85	44 Ru 101.07	76 Os 190.21	108 Hs
			25 Mn 54.94	43 Tc 98.91	75 Re 186.21	107 Bh (262)
Atomic Number	Atomic Mass		24 Cr 52.00	42 Mo 95.94	74 W 183.85	106 Sg (263)
Atomic	Atomi		23 V 50.94	41 Nb 92.91	73 Ta 180.95	105 Db (262)
			22 Ti 47.90	40 Zr 91.22	72 Hf 178.49	104 Rf (261)
			21 Sc 44.96	39 Y 88.91	57 † La 138.91	89 ‡ Ac (227)
	4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.34	88 Ra (226)
1 H 1.01	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)

† 58 59 60 61 61 62 63 64 65 66 67 68 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Lu 140.12 140.91 144.24 146.92 150.35 151.96 157.25 158.92 162.50 164.93 167.26 168.93 173.04 174.97 ‡ 90 91 92 93 94 95 96 97 98 99 100 101 102 103
59 60 61 62 63 64 65 66 67 68 69 Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm 140.91 144.24 146.92 150.35 151.96 157.25 158.92 162.50 164.93 167.26 168.93 1 91 92 93 94 95 96 97 98 99 100 101 Pa U Np Pu Am Cm Bk Cf Es Fm Md 231.04 238.03 (237) (242) (247) (247) (251) (257) (258) 258)
59 60 61 62 63 64 65 66 67 68 Pr Nd Pm Sm Eu Gd Tb Dy Ho Er 140.91 144.24 146.92 150.35 151.96 157.25 158.92 162.50 164.93 167.26 1 91 92 93 94 95 96 97 98 99 100 Pa U Np Pu Am Cm Bk Cf Es Fm 231.04 238.03 (237) (242) (247) (251) (254) (257) (257)
59 60 61 62 63 64 65 66 67 67 66 67 66 67 Ho Pr Nd Pm Sm Eu Gd Th Dy Ho Ho 140.91 144.24 146.92 150.35 151.96 157.25 158.92 162.50 164.93 164.93 91 92 93 94 95 96 97 98 99 Pa Np Pu Am Cm Bk Cf Es 231.04 238.03 (237) (242) (247) (247) (251) (254)
59 60 61 62 63 64 65 66 Pr Nd Pm Sm Eu Gd Tb Dy 140.91 144.24 146.92 150.35 151.96 157.25 158.92 162.50 1 91 92 93 94 95 96 97 98 Pa U Np Pu Am Cm Bk Cf 231.04 238.03 (237) (242) (243) (247) (247) (251)
59 60 61 62 63 64 65 Pr Nd Pm Sm Eu Gd Tb 140.91 144.24 146.92 150.35 151.96 157.25 158.92 91 92 93 94 95 96 97 Pa U Np Pu Am Cm Bk 231.04 238.03 (237) (242) (243) (247) (247)
59 60 61 62 63 64 Pr Nd Pm Sm Eu Gd 140.91 144.24 146.92 150.35 151.96 157.25 1 91 92 93 94 95 96 Pa U Np Pu Am Cm 231.04 238.03 (237) (242) (243) (247)
59 60 61 62 63 Pr Nd Pm Sm Eu 140.91 144.24 146.92 150.35 151.96 91 92 93 94 95 Pa U Np Pu Am 231.04 238.03 (237) (242) (243)
59 60 61 62 Pr Nd Pm Sm 140.91 144.24 146.92 150.35 1 91 92 93 94 Pa U Np Pu 231.04 238.03 (237) (242)
59 60 61 Pr Nd Pm 140.91 144.24 146.92 91 92 93 Pa U Np 231.04 238.03 (237)
59 60 Pr Nd 140.91 144.24 1 91 92 Pa U 231.04 238.03
59 Pr 140.91 91 Pa 231.04 2
++

- 1. How many molecules are present in a drop of water of mass 9.00×10^{-2} g?
 - A. 3.01×10^{21}
 - B. 3.01×10^{22}
 - C. 9.75×10^{23}
 - D. 1.20×10^{26}
- 2. What amount of $H_2(g)$ is produced when 12 g of magnesium reacts completely with dilute HCl(aq)?

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

- A. $\frac{1}{4}$ mol
- B. $\frac{1}{2}$ mol
- C. 1 mol
- D. 2 mol
- 3. What amount (in moles) of $FeS_2(s)$ are required to produce 64 g of $SO_2(g)$ according to the following equation?

$$4\text{FeS}_2(s) + 11\text{O}_2(g) \rightarrow 2\text{Fe}_2\text{O}_3(s) + 8\text{SO}_2(g)$$

- A. 0.40
- B. 0.50
- C. 1.0
- D. 2.0
- **4.** An oxide of metal M contains 40 % by mass of oxygen. The metal has a relative atomic mass of 24. What is the empirical formula of the oxide?
 - $A. M_2O_3$
 - B. M_2O
 - C. MO₂
 - D. MO

- 5. 25.0 cm³ of 2.00 mol dm⁻³ HNO₃(aq) reacts completely with 20.0 cm³ of Ba(O H)₂(aq). What is the concentration of barium hydroxide solution?
 - A. $0.800 \text{ mol dm}^{-3}$
 - B. 1.25 mol dm^{-3}
 - C. 2.00 mol dm^{-3}
 - $D. \qquad 2.50 \; mol \; dm^{-3}$
- **6.** Isotopes are elements with
 - A. the same atomic number and the same number of neutrons.
 - B. the same mass number but a different number of neutrons.
 - C. the same atomic number but a different number of neutrons.
 - D. different atomic and mass numbers but the same number of neutrons.
- 7. Which two species contain the same number of neutrons?
 - A. 55 Mn and 56 Fe
 - B. ³⁵Cl and ³⁷Cl
 - C. 23 Na and 39 K
 - D. ³²S and ³⁵Cl

- **8.** On descending a group in the periodic table,
 - I. all the atoms have the same number of valence electrons.
 - II. ionization energy increases.
 - III. electronegativity decreases.

Which of the above statements are correct?

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- **9.** Which of the following displacement reactions is possible?
 - A. $Br_2(aq) + 2Cl^-(aq) \rightarrow 2Br^-(aq) + Cl_2(aq)$
 - B. $I_2(aq) + 2Cl^-(aq) \rightarrow 2I^-(aq) + Cl_2(aq)$
 - C. $Cl_2(aq) + 2I^-(aq) \rightarrow 2Cl^-(aq) + I_2(aq)$
 - D. $I_2(aq) + 2Br^-(aq) \rightarrow 2I^-(aq) + Br_2(aq)$
- **10.** An element E of mass number 40 has the electronic configuration 2. 8. 8. 2. Which statement regarding this element is **not** correct?
 - A. It belongs to group 2 of the periodic table.
 - B. It has 20 neutrons.
 - C. It belongs to the period 4 of the periodic table.
 - D. The formula of its oxide is EO_2 .

11.	Which	intermol	ecular	forces	exist	in	dry	ice,	CO,	(s)	?
-----	-------	----------	--------	--------	-------	----	-----	------	-----	-----	---

- A. Covalent bonds
- B. Dipole-dipole attractions
- C. Van der Waals' forces
- D. Hydrogen bonds

12. Which has the smallest bond angle?

- A. NH₃
- B. CO₂
- C. H₂O
- D. CH₄

13. Which of the compounds H₂O, H₂S, H₂Se and H₂Te has the highest boiling point?

- A. H₂O
- B. H₂S
- C. H₂Se
- D. H₂Te

14. Which molecule is non-polar?

- A. CIF
- $B. PF_3$
- C. CF₄
- D. CFCl₃

- 15. Under what conditions would a given mass of oxygen gas occupy the greatest volume?
 - A. High temperature and high pressure
 - B. High temperature and low pressure
 - C. Low temperature and low pressure
 - D. Low temperature and high pressure
- **16.** Consider the following reaction:

$$N_2(g) + 3H_2(g) \to 2NH_3(g)$$
 $\Delta H^{\oplus} = ?$

Bond enthalpies (in kJ mol⁻¹) involved in the reaction are

$$N \equiv N$$
 x
 $H-H$ y
 $N-H$ z

Which calculation will give the value of ΔH^{\oplus} ?

- A. x+3y-6z
- B. 6z-x+3y
- C. x-3y+6z
- D. x+3y-2z
- **17.** Consider the following reactions:

$$CH_{3}COOH + OH^{-} \rightarrow CH_{3}COO^{-} + H_{2}O$$

$$DH^{+} + OH^{-} \rightarrow H_{2}O$$

$$\Delta H^{\ominus} = q_{1} kJ$$

$$\Delta H^{\ominus} = q_{2} kJ$$

What is the enthalpy change for the reaction below?

$$CH_3COOH \rightarrow CH_3COO^- + H^+$$

- A. $q_2 q_1$
- B. $q_1 q_2$
- C. $-q_1 q_2$
- D. $2q_2 q_1$

- **18.** If 3600 J of heat is added to 180 g of $C_2H_5OH(l)$, its temperature increases from 18.5 °C to 28.5 °C. What is the specific heat capacity of $C_2H_5OH(l)$?
 - $A. \qquad 0.500 \; J \; g^{-1} \; {}^{\circ}C^{-1}$
 - $B \qquad 2.00 \ J \ g^{-1} \ ^{\circ}C^{-1}$
 - $C.~~20.0~J~g^{^{-1}}~^{\circ}C^{^{-1}}$
 - D. $200 \text{ J g}^{-1} \, ^{\circ}\text{C}^{-1}$
- 19. In general, the rate of a reaction can be increased by all of the following except
 - A. increasing the temperature.
 - B. increasing the activation energy.
 - C. increasing the concentration of reactants.
 - D. increasing the surface area of the reactants.
- 20. Under what conditions is the rate of reaction of magnesium with HCl(aq) fastest?
 - A. 10 cm³ of 1.0 mol dm⁻³ HCl(aq) at 25 °C
 - B. $10 \text{ cm}^3 \text{ of } 2.0 \text{ mol dm}^{-3} \text{ HCl(aq) at } 25 \,^{\circ}\text{C}$
 - C. $10 \text{ cm}^3 \text{ of } 2.0 \text{ mol dm}^{-3} \text{ HCl(aq) at } 35 \,^{\circ}\text{C}$
 - D. 10 cm³ of 1.0 mol dm⁻³ HCl(aq) at 35 °C

21. The volume of the reaction vessel containing the following equilibrium mixture

$$SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$$

is increased. When equilibrium is re-established, which of the following will occur?

- A. The amount of $SO_2Cl_2(g)$ will have increased.
- B. The amount of $SO_2Cl_2(g)$ will have decreased.
- C. The amount of $Cl_2(g)$ will remain unchanged.
- D. The amount of $Cl_2(g)$ will have decreased.
- 22. In which reaction does the position of equilibrium remain unaffected by change in pressure?
 - A. $2O_3(g) \rightleftharpoons 3O_2(g)$
 - B. $2NO_2(g) \rightleftharpoons N_2O_4(g)$
 - C. $2NO(g) + Cl_2(g) \rightleftharpoons 2NOCl(g)$
 - D. $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$
- **23.** When the following 0.10 mol dm⁻³ solutions are arranged in order of **increasing** pH (lowest first), what is the correct order?

- A. NaOH, NH₃, CH₃COOH, HCl
- B. HCl, CH₃COOH, NH₃, NaOH
- C. HCl, CH₃COOH, NaOH, NH₃
- D. NaOH, NH₃, HCl, CH₃COOH

24. Consider a weak acid HA dissolved in water:

$$HA(aq) + H_2O(1) \rightleftharpoons H_3O^+(aq) + A^-(aq)$$

Which statements are correct?

- I. $A^{-}(aq)$ is a much stronger base than $H_2O(1)$.
- II. HA dissociates only to a very small extent in aqueous solution.
- III. The concentration of H₃O⁺(aq) is much greater than the concentration of HA(aq).
- A. I, II and III
- B. II and III only
- C. I and II only
- D. I and III only

25. In the reaction

$$3Br_2 + 6CO_3^{2-} + 3H_2O \rightarrow 5Br^- + BrO_3^- + 6HCO_3^-$$

- A. Br_2 is only oxidised.
- B. Br₂ is only reduced.
- C. Br₂ is neither oxidised nor reduced.
- D. Br_2 is both oxidised and reduced.

26. Consider the following statements regarding electrolysis of molten lead(II) bromide.

- I. Oxidation takes place at the anode where lead ions gain electrons.
- II Reduction takes place at the cathode where lead ions gain electrons.
- III Oxidation takes place at the anode where bromide ions lose electrons.
- IV. Reduction takes place at the cathode where bromide ions lose electrons.

Which of the above statements are correct?

- A. I and II only
- B. I and IV only
- C. II and III only
- D. II and IV only

- 27. A compound with the empirical formula C_2H_4O has a relative molecular mass of 88. What is the formula of the compound?
 - A. CH₃CH₂COCH₃
 - B. CH₃COOH
 - C. HCOOCH₃
 - D. CH₃CH₂CH₂COOH
- **28.** Consider the following reaction.

heat

$$CH_3COOH + NH_3 \rightarrow CH_3COONH_4 \rightarrow CH_3CONH_2$$

What will be the final product if aminoethane (ethylamine) is used instead of NH₃?

- A. CH₃CONHCH₂CH₃
- B. CH₃CONHCH₃
- C. CH₃CONH₂
- D. CH₃CONH₂CH₂CH₃
- **29.** Statement (S): Solubility of alkanols in water decreases with increase in $M_{\rm r}$.

Explanation (E): The relative proportion of the hydrocarbon part in alkanol increases with increasing $\,M_{\rm r}\,$

- A. Both S and E are true.
- B. Both S and E are false.
- C. S is true but E is false.
- D. S is false but E is true.

30. Which of the following compounds is optically active?