

CHEMISTRY STANDARD LEVEL PAPER 1

Monday 20 May 2002 (afternoon)

45 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

1 H 1.01 3 6.94	4 Be 9.01			Period Atomic Atomic	Number Number	ole						5 B 10.81 13	6 C 12.01 14	7 N 14.01 15	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 19.00 17	2 He 4.00 Ne 18 18
Na 22.99	Mg 24.31				-							AI 26.98	Si 28.09	P 30.97	S 32.06	CI CI 35.45	Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.90	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 C0 58.93	28 Ni 58.71	29 Cu 63.55	30 Zn 65.37	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc 98.91	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.40	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 I 126.90	54 Xe 131.30
55 Cs 132.91	56 Ba 137.34	57 † La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.21	76 Os 190.21	77 Ir 192.22	78 Pt 195.09	79 Au 196.97	80 Hg 200.59	81 TI 204.37	82 Pb 207.19	83 Bi 208.98	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs	109 Mt									
		- <u>+</u>	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm 146.92	62 Sm 150.35	63 Eu 151.96	64 Gd 157.25	65 Tb 158.92	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97	
		**	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (254)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)	

222-161

M02/420/S(1)

1. A compound that contains only carbon, hydrogen and oxygen has the following percentage by mass:

carbon 60 %, hydrogen 8 %, oxygen 32 %.

What is a possible molecular formula?

- A. $C_5H_8O_2$
- B. C_5H_4O
- C. C₆HO₃
- D. C₇HO₄
- 2. Which sample contains the smallest amount of oxygen?
 - A. $0.3 \text{ mol } H_2SO_4$
 - B. $0.6 \mod O_3$
 - C. 0.7 mol HCOOH
 - D. $0.8 \text{ mol } H_2O$
- 3. When the equation $C_4H_{10} + O_2 \rightarrow CO_2 + H_2O$ is balanced correctly, what is the coefficient for O_2 ?
 - A. 9
 - B. 13
 - C. 18
 - D. 24

- **4.** 6.4 g of copper wire is added to 0.10 dm³ of 1.0 moldm⁻³ aqueous AgNO₃ to form metallic silver and aqueous copper(II) nitrate. When the reaction is complete
 - A. excess copper wire remains.
 - B. all the copper wire dissolves and some silver ions are left in solution.
 - C. all the copper wire dissolves and no silver ions are left in solution.
 - D. the mass of metallic silver formed is equal to the mass of copper wire that reacts.
- 5. 2.02 g of KNO₃ ($M_r = 101$) is dissolved in sufficient water to prepare 0.500 dm³ of solution. What is the concentration of this solution in moldm⁻³?
 - A. 0.02
 - B. 0.04
 - C. 0.10
 - D. 0.20
- 6. Copper consists of the isotopes ⁶³Cu and ⁶⁵Cu and has a relative atomic mass of 63.55. What is the most likely composition?

	⁶³ Cu	⁶⁵ Cu
A.	30 %	70 %
B.	50 %	50 %
C.	55 %	45 %
D.	70 %	30 %

- 7. What is the electron arrangement of the ion ${}^{16}_{8}O^{2-}$?
 - A. 2,6
 - B. 2,8
 - C. 2,8,6
 - D. 2,8,8
- 8. An element is in group 3 and period 2. How many electrons are present in its outer shell?
 - A. 2
 - B. 3
 - C. 5
 - D. 6
- 9. Which property increases with increasing atomic number for both the alkali metals and the halogens?
 - A. Atomic radius
 - B. Electronegativity
 - C. Ionisation energy
 - D. Melting point
- **10.** Which of the following reactions is/are spontaneous?
 - I. $Cl_2 + 2Br^- \rightarrow Br_2 + 2Cl^-$
 - II. $Br_2 + 2I^- \rightarrow I_2 + 2Br^-$
 - A. I only
 - B. II only
 - C. Both I and II
 - D. Neither I nor II

11. What formula would result from the combination of element *A* (group 2) and element *B* (group 7)?

- A. AB
- B. AB_2
- C. A_2B_7
- D. A_7B_2

A.

12. When the Lewis structure for $HCOOCH_3$ is drawn, how many bonding and how many lone pairs of electrons are present?

Bond pairs	Lone pairs
8	4

B.	7	5
C.	7	4
D.	5	5

- 13. The carbon–carbon bond angle in CH_3CHCH_2 is closest to
 - A. 180°.
 - B. 120°.
 - C. 109°.
 - $D. \qquad 90^{\circ}.$

14. The compounds A, B, C, have approximately the same molar mass.

Α	В	С
$C_4 H_{10}$	CH ₃ CH ₂ CH ₂ OH	CH ₃ OCH ₂ CH ₃

When these compounds are arranged in order of increasing boiling points (lowest boiling point first), the correct order is

- A. **A**, **C**, **B**.
- B. **A**, **B**, **C**.
- C. **B**, **C**, **A**.
- D. **C**, **B**, **A**.
- 15. What occurs during the change from a liquid to a solid at a fixed temperature?
 - A. The particles become smaller and heat is released.
 - B. The particles get closer together and heat is absorbed.
 - C. The particles become more ordered and heat is released.
 - D. The attractive forces between the particles become stronger and heat is absorbed.
- 16. When the solids $Ba(OH)_2 \cdot 8H_2O$ and NH_4SCN are mixed, a solution is formed and the temperature decreases. Which statement about this reaction is correct?
 - A. The reaction is exothermic and ΔH is negative.
 - B. The reaction is exothermic and ΔH is positive.
 - C. The reaction is endothermic and ΔH is negative.
 - D. The reaction is endothermic and ΔH is positive.

17. Using the information below:

$$\begin{split} H_2(g) + O_2(g) &\rightarrow H_2O_2(l) \\ 2H_2(g) + O_2(g) &\rightarrow 2H_2O(l) \\ \Delta H &= -571.6 \text{ kJ} \end{split}$$

what is the value of ΔH (in kJ) for the following reaction?

$$2H_2O_2(l) \rightarrow 2H_2O(l) + O_2(g)$$

- A. -196.4
- B. 384.0
- C. 759.2
- D. 946.8
- **18.** What is the value of ΔH (in kJ mol⁻¹) for the reaction below?

Bond Energies	H—H	С—С	C = C	С—Н
/ kJ mol ⁻¹	436	348	612	412

- A. 124
- B. 101
- C. -101
- D. -124

19. $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$

Which change will increase the rate of the reaction when 50 cm³ of 1.0 moldm⁻³ HCl is added to 1.0 g of CaCO₃?

- A. The volume of HCl is increased.
- B. The concentration of HCl is decreased.
- C. The size of the $CaCO_3$ solid particles is decreased.
- D. The pressure of the CO_2 is increased.
- **20.** Which statement(s) about the following reaction at 100 °C is/are correct?

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

- I. Every collision between N_2 and H_2 molecules is expected to produce NH_3 .
- II. This reaction must involve a collision between one N_2 and three H_2 molecules.
- A. I only
- B. II only
- C. Both I and II
- D. Neither I nor II
- 21. For a gaseous reaction, the equilibrium constant expression is:

$$K_{\rm c} = \frac{[O_2]^5 [NH_3]^4}{[NO]^4 [H_2O]^6}.$$

Which equation corresponds to this equilibrium expression?

- A. $4NH_3 + 5O_2 \rightleftharpoons 4NO + 6H_2O$
- B. $4NO + 6H_2O \rightleftharpoons 4NH_3 + 5O_2$
- C. $8NH_3 + 10O_2 \rightleftharpoons 8NO + 12H_2O$
- D. $2NO + 3H_2O \Longrightarrow 2NH_3 + \frac{5}{2}O_2$

22. The reaction

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

is exothermic. Which of the following could be used to shift the equilibrium to the right?

- I. Increasing the pressure
- II. Increasing the temperature
- A. I only
- B. II only
- C. Both I and II
- D. Neither I nor II
- 23. Solutions P, Q, R and S have the following properties:

P: pH = 8 **Q**: $[H^+] = 1 \times 10^{-3} \text{ mol dm}^{-3}$ **R**: pH = 5 **S**: $[H^+] = 2 \times 10^{-7} \text{ mol dm}^{-3}$

When these solutions are arranged in order of increasing acidity (least acidic first), the correct order is

- A. **P**, **S**, **R**, **Q**.
- B. **Q**, **R**, **S**, **P**.
- C. S, R, P, Q.
- D. **R**, **P**, **Q**, **S**.
- 24. The ionisation of sulfuric acid is represented by the equations below:

$$H_2SO_4(aq) + H_2O(l) \rightarrow H_3O^+(aq) + HSO_4^-(aq)$$
$$HSO_4^-(aq) + H_2O(l) \rightarrow H_3O^+(aq) + SO_4^{2-}(aq)$$

What is the conjugate base of $HSO_4^-(aq)$?

- A. $H_2O(l)$
- B. $H_3O^+(aq)$
- C. $H_2SO_4(aq)$
- D. $SO_4^{2-}(aq)$

25. Which of the following changes represents a reduction reaction?

- A. $Mn^{2+}(aq) \rightarrow MnO_4^{-}(aq)$
- B. $2\operatorname{CrO}_4^{2-}(\operatorname{aq}) \to \operatorname{Cr}_2\operatorname{O}_7^{2-}(\operatorname{aq})$
- C. $SO_4^{2-}(aq) \rightarrow SO_3^{2-}(aq)$

D.
$$Zn(s) \rightarrow Zn^{2+}(aq)$$

26. During the electrolysis of a molten salt, the cation moves toward the ... I... and undergoes ... II....

	Ι	П
A.	negative electrode	reduction
B.	negative electrode	oxidation
C.	positive electrode	oxidation

- D. positive electrode reduction
- 27. When one mole of ethene reacts with two moles of oxygen gas
 - A. ΔH is positive.
 - B. the oxidation number of carbon is unchanged.
 - C. an alcohol is formed.
 - D. carbon monoxide is produced.
- **28.** What is the name of the compound $CH_3CH_2CH_2COOCH_3$?
 - A. Butyl methanoate
 - B. Methyl butanoate
 - C. Methyl propanoate
 - D. Pentanone

- 12 -
- **29.** Which molecule possesses a chiral centre?
 - A. NH₂CH₂COOH
 - B. CH₃CH(NH₂)COOH
 - C. $CH_3C(NH_2)_2COOH$
 - D. $(CH_3)_2C(NH_2)COOH$
- **30.** What is the product of the reaction between bromine and ethene?
 - A. $CH_2 = CHBr$
 - B. CHBr = CHBr
 - $C. \quad CH_3 CH_2 Br$
 - D. CH₂BrCH₂Br