CHEMISTRY
 STANDARD LEVEL
 PAPER 1

Monday 20 May 2002 (afternoon)
45 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

$\begin{gathered} 1 \\ \mathbf{H} \\ 1.01 \end{gathered}$				Atomic Number Atomic Mass													$\begin{gathered} 2 \\ \text { He } \\ 4.00 \end{gathered}$
$\begin{gathered} 3 \\ \mathbf{L i} \\ 6.94 \end{gathered}$	$\begin{gathered} 4 \\ \text { Be } \\ 9.01 \end{gathered}$											$\begin{gathered} 5 \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\begin{gathered} { }^{6} \\ \mathbf{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{0} \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} 10 \\ \mathbf{N e} \\ 20.18 \end{gathered}$
$\begin{gathered} 11 \\ \mathbf{N a} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$											$\begin{gathered} 13 \\ \mathbf{A l} \\ 26.98 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{S i} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.06 \end{gathered}$	$\begin{gathered} 17 \\ \mathbf{C l} \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.95 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathbf{C a} \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \text { Sc } \\ 44.96 \end{gathered}$	$\begin{gathered} 22 \\ \mathbf{T i} \\ 47.90 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ 52.00 \end{gathered}$	$\begin{gathered} 25 \\ \mathbf{M n} \\ 54.94 \end{gathered}$	$\begin{gathered} 26 \\ \mathbf{F e} \\ 55.85 \end{gathered}$	$\begin{gathered} 27 \\ \mathbf{C o} \\ 58.93 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.71 \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ 63.55 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.37 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{G e} \\ 72.59 \end{gathered}$	$\begin{gathered} 33 \\ \mathbf{A s} \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \mathbf{S e} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
$\begin{gathered} 37 \\ \mathbf{R b} \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ 92.91 \end{gathered}$	$\begin{gathered} 42 \\ \text { Mo } \\ 95.94 \end{gathered}$	$\begin{gathered} 43 \\ \text { Tc } \\ 98.91 \end{gathered}$	$\begin{gathered} 44 \\ \mathbf{R u} \\ 101.07 \end{gathered}$	$\begin{array}{\|c\|} \hline 45 \\ \mathbf{R h} \\ 102.91 \end{array}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.42 \end{gathered}$	$\begin{gathered} 47 \\ \mathbf{A g} \\ 107.87 \end{gathered}$	$\begin{gathered} 48 \\ \mathbf{C d} \\ 112.40 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \mathbf{S n} \\ 118.69 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.75 \end{gathered}$	$\begin{gathered} 52 \\ \mathbf{T e} \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \mathbf{I} \\ 126.90 \end{gathered}$	$\begin{gathered} 54 \\ \mathbf{X e} \\ 131.30 \end{gathered}$
$\begin{gathered} 55 \\ \text { Cs } \\ 132.91 \end{gathered}$	$\begin{gathered} 56 \\ \mathbf{B a} \\ 137.34 \end{gathered}$	$\begin{gathered} 57 \dagger \\ \mathbf{L a} \\ 138.91 \end{gathered}$	$\begin{gathered} 72 \\ \mathbf{H f} \\ 178.49 \end{gathered}$	$\begin{gathered} 73 \\ \text { Ta } \\ 180.95 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.85 \end{gathered}$	$\begin{gathered} 75 \\ \mathbf{R e} \\ 186.21 \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ 190.21 \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.22 \end{gathered}$	$\begin{gathered} 78 \\ \mathbf{P t} \\ 195.09 \end{gathered}$	$\begin{gathered} 79 \\ \mathbf{A u} \\ 196.97 \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{gathered} 81 \\ \mathbf{T l} \\ 204.37 \end{gathered}$	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.19 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \mathbf{P o} \\ (210) \end{gathered}$	$\begin{gathered} 85 \\ \mathbf{A t} \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathbf{F r} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathbf{R a} \\ (226) \end{gathered}$	$\begin{gathered} 89 \ddagger \\ \mathbf{A c} \\ (227) \end{gathered}$	$\begin{gathered} 104 \\ \text { Rf } \\ (261) \end{gathered}$	$\begin{gathered} 105 \\ \text { Db } \\ (262) \end{gathered}$	$\begin{gathered} 106 \\ \mathbf{S g} \\ (263) \end{gathered}$	$\begin{gathered} 107 \\ \mathbf{B h} \\ (262) \end{gathered}$	$\begin{aligned} & 108 \\ & \mathbf{H s} \end{aligned}$	$\begin{aligned} & 109 \\ & \mathbf{M t} \end{aligned}$									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	146.92	150.35	151.96	157.25	158.92	162.50	164.93	167.26	168.93	173.04	174.97

응융
ลิ．
－E E
可帯免毎
すき
ここ
Q쿨

Periodic Table

1. A compound that contains only carbon, hydrogen and oxygen has the following percentage by mass: carbon 60%, hydrogen 8%, oxygen 32%.

What is a possible molecular formula?
A. $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$
B. $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}$
C. $\mathrm{C}_{6} \mathrm{HO}_{3}$
D. $\mathrm{C}_{7} \mathrm{HO}_{4}$
2. Which sample contains the smallest amount of oxygen?
A. $0.3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$
B. $0.6 \mathrm{~mol} \mathrm{O}_{3}$
C. 0.7 mol HCOOH
D. $0.8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
3. When the equation $\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ is balanced correctly, what is the coefficient for O_{2} ?
A. 9
B. 13
C. 18
D. 24
4. 6.4 g of copper wire is added to $0.10 \mathrm{dm}^{3}$ of $1.0 \mathrm{moldm}^{-3}$ aqueous AgNO_{3} to form metallic silver and aqueous copper(II) nitrate. When the reaction is complete
A. excess copper wire remains.
B. all the copper wire dissolves and some silver ions are left in solution.
C. all the copper wire dissolves and no silver ions are left in solution.
D. the mass of metallic silver formed is equal to the mass of copper wire that reacts.
5. 2.02 g of $\mathrm{KNO}_{3}\left(M_{\mathrm{r}}=101\right)$ is dissolved in sufficient water to prepare $0.500 \mathrm{dm}^{3}$ of solution. What is the concentration of this solution in moldm^{-3} ?
A. 0.02
B. 0.04
C. 0.10
D. 0.20
6. Copper consists of the isotopes ${ }^{63} \mathrm{Cu}$ and ${ }^{65} \mathrm{Cu}$ and has a relative atomic mass of 63.55 . What is the most likely composition?
${ }^{63} \mathrm{Cu} \quad{ }^{65} \mathrm{Cu}$
A. $30 \% \quad 70 \%$
B. $50 \% \quad 50 \%$
C. $55 \% \quad 45 \%$
D. $70 \% \quad 30 \%$
7. What is the electron arrangement of the ion ${ }_{8}^{16} \mathrm{O}^{2-}$?
A. 2,6
B. 2,8
C. $2,8,6$
D. $2,8,8$
8. An element is in group 3 and period 2. How many electrons are present in its outer shell?
A. 2
B. 3
C. 5
D. 6
9. Which property increases with increasing atomic number for both the alkali metals and the halogens?
A. Atomic radius
B. Electronegativity
C. Ionisation energy
D. Melting point
10. Which of the following reactions is/are spontaneous?
I. $\mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-}$
II. $\mathrm{Br}_{2}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{Br}^{-}$
A. I only
B. II only
C. Both I and II
D. Neither I nor II
11. What formula would result from the combination of element A (group 2) and element B (group 7)?
A. $A B$
B. $A B_{2}$
C. $A_{2} B_{7}$
D. $A_{7} B_{2}$
12. When the Lewis structure for HCOOCH_{3} is drawn, how many bonding and how many lone pairs of electrons are present?

Bond pairs Lone pairs

A. 8
4
B. 7
5
C. $\quad 7$
4
D. 5
5
13. The carbon-carbon-carbon bond angle in $\mathrm{CH}_{3} \mathrm{CHCH}_{2}$ is closest to
A. $\quad 180^{\circ}$.
B. 120°.
C. $\quad 109^{\circ}$.
D. 90°.
14. The compounds $\mathbf{A}, \mathbf{B}, \mathbf{C}$, have approximately the same molar mass.
A
$\mathrm{C}_{4} \mathrm{H}_{10}$
B
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

C
$\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{3}$

When these compounds are arranged in order of increasing boiling points (lowest boiling point first), the correct order is
A. $\mathbf{A}, \mathbf{C}, \mathbf{B}$.
B. $\mathbf{A}, \mathbf{B}, \mathbf{C}$.
C. $\mathbf{B}, \mathbf{C}, \mathbf{A}$.
D. $\mathbf{C}, \mathbf{B}, \mathbf{A}$.
15. What occurs during the change from a liquid to a solid at a fixed temperature?
A. The particles become smaller and heat is released.
B. The particles get closer together and heat is absorbed.
C. The particles become more ordered and heat is released.
D. The attractive forces between the particles become stronger and heat is absorbed.
16. When the solids $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NH}_{4} \mathrm{SCN}$ are mixed, a solution is formed and the temperature decreases. Which statement about this reaction is correct?
A. The reaction is exothermic and ΔH is negative.
B. The reaction is exothermic and ΔH is positive.
C. The reaction is endothermic and ΔH is negative.
D. The reaction is endothermic and ΔH is positive.
17. Using the information below:

$$
\begin{array}{ll}
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) & \Delta H=-187.6 \mathrm{~kJ} \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta H=-571.6 \mathrm{~kJ}
\end{array}
$$

what is the value of ΔH (in kJ) for the following reaction?

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
$$

A. -196.4
B. -384.0
C. -759.2
D. -946.8
18. What is the value of ΔH (in $\mathrm{kJ} \mathrm{mol}{ }^{-1}$) for the reaction below?

Bond Energies	$\mathrm{H}-\mathrm{H}$	$\mathrm{C}-\mathrm{C}$	$\mathrm{C}=\mathrm{C}$	$\mathrm{C}-\mathrm{H}$
$/ \mathbf{k J ~ m o l}^{-1}$	436	348	612	412

A. 124
B. 101
C. -101
D. -124
19.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Which change will increase the rate of the reaction when $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{moldm}^{-3} \mathrm{HCl}$ is added to 1.0 g of CaCO_{3} ?
A. The volume of HCl is increased.
B. The concentration of HCl is decreased.
C. The size of the CaCO_{3} solid particles is decreased.
D. The pressure of the CO_{2} is increased.
20. Which statement(s) about the following reaction at $100{ }^{\circ} \mathrm{C}$ is/are correct?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

I. Every collision between N_{2} and H_{2} molecules is expected to produce NH_{3}.
II. This reaction must involve a collision between one N_{2} and three H_{2} molecules.
A. I only
B. II only
C. Both I and II
D. Neither I nor II
21. For a gaseous reaction, the equilibrium constant expression is:

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{O}_{2}\right]^{5}\left[\mathrm{NH}_{3}\right]^{4}}{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}} .
$$

Which equation corresponds to this equilibrium expression?
A. $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightleftharpoons 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
B. $4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 4 \mathrm{NH}_{3}+5 \mathrm{O}_{2}$
C. $8 \mathrm{NH}_{3}+10 \mathrm{O}_{2} \rightleftharpoons 8 \mathrm{NO}+12 \mathrm{H}_{2} \mathrm{O}$
D. $2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2}$
22. The reaction

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

is exothermic. Which of the following could be used to shift the equilibrium to the right?
I. Increasing the pressure
II. Increasing the temperature
A. I only
B. II only
C. Both I and II
D. Neither I nor II
23. Solutions $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S} have the following properties:
P: $\mathrm{pH}=8$
Q: $\left[\mathrm{H}^{+}\right]=1 \times 10^{-3} \mathrm{moldm}^{-3}$
R: $\mathrm{pH}=5$
S: $\left[\mathrm{H}^{+}\right]=2 \times 10^{-7} \mathrm{moldm}^{-3}$

When these solutions are arranged in order of increasing acidity (least acidic first), the correct order is
A. $\mathbf{P}, \mathbf{S}, \mathbf{R}, \mathbf{Q}$.
B. $\mathbf{Q}, \mathbf{R}, \mathbf{S}, \mathbf{P}$.
C. $\mathbf{S}, \mathbf{R}, \mathbf{P}, \mathbf{Q}$.
D. $\mathbf{R}, \mathbf{P}, \mathbf{Q}, \mathbf{S}$.
24. The ionisation of sulfuric acid is represented by the equations below:

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq}) \\
\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})
\end{gathered}
$$

What is the conjugate base of $\mathrm{HSO}_{4}^{-}(\mathrm{aq})$?
A. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B. $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
C. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
D. $\mathrm{SO}_{4}^{2-}(\mathrm{aq})$
25. Which of the following changes represents a reduction reaction?
A. $\mathrm{Mn}^{2+}(\mathrm{aq}) \rightarrow \mathrm{MnO}_{4}^{-}(\mathrm{aq})$
B. $2 \mathrm{CrO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})$
C. $\quad \mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{SO}_{3}^{2-}(\mathrm{aq})$
D. $\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})$
26. During the electrolysis of a molten salt, the cation moves toward the ...I... and undergoes ...II.... I II
A. negative electrode reduction
B. negative electrode oxidation
C. positive electrode oxidation
D. positive electrode reduction
27. When one mole of ethene reacts with two moles of oxygen gas
A. ΔH is positive.
B. the oxidation number of carbon is unchanged.
C. an alcohol is formed.
D. carbon monoxide is produced.
28. What is the name of the compound $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$?
A. Butyl methanoate
B. Methyl butanoate
C. Methyl propanoate
D. Pentanone
29. Which molecule possesses a chiral centre?
A. $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
B. $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$
C. $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{COOH}$
D. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$
30. What is the product of the reaction between bromine and ethene?
A. $\mathrm{CH}_{2}=\mathrm{CHBr}$
B. $\mathrm{CHBr}=\mathrm{CHBr}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$
D. $\mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{Br}$

