

MARKSCHEME

November 2001

CHEMISTRY

Standard Level

Paper 2

SECTION A

1.	(a)	$\Delta H_{\rm rxn} = \sum {\rm BE}_{\rm breaking} - \sum {\rm BE}_{\rm making}$	
		$= (BE_{C=C} + BE_{H-H}) - (BE_{C-C} + 2BE_{C-H})$	[1]
		=(612+436)-[348+2(412)]	[1]
		=1048-1172 (OR 2696-2820 if all bonds are broken and made)	
		$= -124 \text{ kJ mol}^{-1} (\text{accept} -124 \text{ kJ});$	[1]
		$(+124 kJ mol^{-1} scores [2])$	
	(b)	2(-124) = -248 kJ (allow ECF from (a))	[1]
		Has $2 \text{ C} = \text{C}$, needs 2 H_2 / forms twice the bonds	[1]
		40 00 6 72 53 28	
2.	(a)	$n_{\rm C} = \frac{10000}{12.01}; n_{\rm H} = \frac{0002}{1.01} =; n_{\rm O} = \frac{00020}{16.0}$	
		=3.333 = 6.65 = 3.333	[1]
		Empirical formula: CH ₂ O	[1]
	(b)	$(CH_2O): (12+2+16) = 30;$ molar mass = 2× empirical mass / OWTTE	[1]
		(Award only [1] if reasoning not given)	[1]
	(c)	СН.СООН	Ш
	(0)	HCOOCH.	[1]
		(Accept other formulas e.g. CH_2OHCHO and $CHOH=CHOH$)	
	(d)	pH: CH ₃ COOH pH < 7; HCOOCH ₃ pH = 7 / ester will be higher / acid will be lower	
		Smell: CH ₃ COOH pungent/vinegar smell; HCOOCH ₃ sweet smell	
		Boiling point: CH ₃ COOH higher; HCOOCH ₃ lower	[4]
		([1] for each test, [1] for results of each test, [4 max])	
3.	(a)	Mg : 0 Cu^{2+} : + 2 (need both for mark)	[1]
	(b)	Cu^{2+}	[1]
	(-)	(Accept copper / Cu)	
	(c)	Ti (reacts with Ni^{2+} and Cu^{2+}) is a stronger reducing agent than Ni and Cu	[1]
		But weaker reducing agent than Mg Therefore, Mg, Ti, Ni, Cu	[1] [1]
			Total [20]
			- vini [#v]

SECTION B

4.	(a)	(i)	Acid: proton / H ⁺ donor	[1]
			Base: proton / H ⁺ acceptor	[1]
		(ii)	A pair that differs by a proton / H^+	[1]
			H_3O^+/H_2O OR H_2O/OH^- (accept other valid answers)	[1]
		(iii)	Both	[1]
			Acid: $HCO_3^- + H_2O \rightleftharpoons CO_3^{2-} + H_3O^+$	[1]
			Base: $HCO_3^- + H_2O \rightleftharpoons H_2CO_3 + OH^-$	[1]
			(States not required; accept single arrow)	
		(iv)	$\mathrm{CO}_3^{2-} + \mathrm{H}_2\mathrm{O} \rightleftharpoons \mathrm{HCO}_3^- + \mathrm{OH}^-$	[1]
			Undergoes (base) hydrolysis / reacts with water to produce OH ⁻ OR Products of hydrolysis are a weak acid and strong base	[1]
	(b)	Mea	sure pH / use pH meter / use universal indicator	[1]
		Stro	ng acid has lower pH / weak acid has higher pH	[1]
		Mea Stroi	sure conductivity	[1]
		Read	et with magnesium / calcium carbonate	[1]
		Stro	ng acid reacts faster / weak acid reacts slower	[1]
		Mea	sure heat change / temperature rise on adding NaOH	
		Stro	ng acid has greater value / weak acid has lower value	[1]
		(acc	ept any suitable pair of method and difference for [2] each)	
		Stro	ng acid fully ionized / dissociated	[1]
		Wea	k acid partly ionized / dissociated	[1]
	(c)	(i)	Urea first in list and NaOH last	[1]
			Ammonia before caffeine	[1]
		(ii)	Each pH unit represents a tenfold change in acidity	[1]
			5 pH units $\Rightarrow 10 \times 10 \times 10 \times 10 \times 10 = 100000$ times different	[1]
			pH = 12 - 5 = 7	[1]
				Total [20]

(a)	(i)	$H_2O(l) \rightleftharpoons H^+(aq) + OH^-(aq) / 2H_2O(l) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$ (States and equilibrium sign needed for second mark)	[2]
	(ii)	Endothermic Bond breaking needs energy	[1] [1]
	(iii)	Forward reaction K increases, thus more H^+/OH^- formed OR Temperature increase favours forward reaction to use up some of the heat supplied (<i>second mark not awarded for only saying 'due to Le Chatelier's principle'</i>). (Allow ECF from (ii))	[1] [1]
(b)	(i)	All substances are in the same phase / state (Accept all are gases)	[1]
	(ii)	No further change in temperature / colour (of iodine) / concentrations	[1]
	(iii)	$K_c > 1$: [products] exceed [reactants] at equilibrium / OWTTE $K_c \ll 1$: reaction hardly proceeds / does not proceed / [reactants] \gg [products]	[1] [1]
	(iv)	Decreasing volume increases pressure / concentration However no change in equilibrium position Since number of moles of gases the same in reactants and products	[1] [1] [1]
	(v)	No effect on position of equilibrium Speeds up both forward and reverse reaction No effect on K_c Value of K_c is affected only by T	[1] [1] [1] [1]
(c)	(One 0.25 Ther	e H ₂ reacts with one I ₂ to form 2HI) mol H ₂ and 0.25 mol H ₂ react to form 0.50 mol HI refore, $[H_2] = 0.15 + 0.25 = 0.40$ mol dm ⁻³ $[I_2] = 0.05 + 0.25 = 0.30$ mol dm ⁻³	[1] [1] [1]

Total [20]

5.

6. (a) (i) Hydrogen bonding [1] A hydrogen atom bonded to a highly electronegative oxygen atom [1] Strong / special type of dipole-dipole interaction [1] (ii) Van der Waals' / London / dispersion forces [1] Temporary distortion of electron cloud in the non-polar atoms / OWTTE [1] Weak / temporary / instantaneous dipole-dipole interaction [1] [1] (iii) Electrostatic attraction between Na⁺ and Cl⁻/ ions of opposite charge Ions formed due to electron transfer [1]

(b) (i)

[1] [1] [1] [1] [1] (Penalise only once if charge on ion or lone e⁻ pairs on terminal atoms are missing)

(ii)	PCl ₃ :	trigonal pyramidal	[1]
		$<109^{\circ}$ / $\simeq 109^{\circ}$ (but not $109\frac{1}{2}^{\circ}$ or tetrahedral angle)	[1]
	NH_2^{-1} :	bent / angular / v-shaped	[1]
	_	$<109^{\circ}/\simeq 109^{\circ}$ (but not $109\frac{1}{2}^{\circ}$)	[1]
	NH_4^+ :	tetrahedral	[1]
	·	$109\frac{1}{2}^{\circ}$	[1]
		2	

Total [20]