MARKSCHEME

November 2001

CHEMISTRY

Standard Level

Paper 2

SECTION A

1. (a) $\Delta H_{\text {rxn }}=\sum \mathrm{BE}_{\text {breaking }}-\sum \mathrm{BE}_{\text {making }}$

$$
\begin{aligned}
& =\left(\mathrm{BE}_{\mathrm{C}=\mathrm{C}}+\mathrm{BE}_{\mathrm{H}-\mathrm{H}}\right)-\left(\mathrm{BE}_{\mathrm{C}-\mathrm{C}}+2 \mathrm{BE}_{\mathrm{C}-\mathrm{H}}\right) \\
& =(612+436)-[348+2(412)] \\
& =1048-1172(\mathbf{O R} 2696-2820 \text { if all bonds are broken and made }) \\
& =-124 \mathrm{~kJ} \mathrm{~mol}^{-1}(\text { accept }-124 \mathrm{~kJ}) ; \\
& \left(+124 \mathrm{~kJ} \mathrm{~mol}^{-1}\right. \text { scores [2]) }
\end{aligned}
$$

(b) $2(-124)=-248 \mathrm{~kJ}$ (allow ECF from (a))

Has $2 \mathrm{C}=\mathrm{C}$, needs $2 \mathrm{H}_{2}$ / forms twice the bonds [1]
2. (a) $\mathrm{n}_{\mathrm{C}}=\frac{40.00}{12.01} ; \mathrm{n}_{\mathrm{H}}=\frac{6.72}{1.01}=; \mathrm{n}_{\mathrm{O}}=\frac{53.28}{16.0}$

$$
=3.333=6.65=3.333
$$

Empirical formula: $\mathrm{CH}_{2} \mathrm{O}$ [1]
(b) $\quad\left(\mathrm{CH}_{2} \mathrm{O}\right):(12+2+16)=30$; molar mass $=2 \times$ empirical mass $/$ OWTTE

Therefore $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
(Award only [1] if reasoning not given)
(c) $\mathrm{CH}_{3} \mathrm{COOH}$
HCOOCH_{3}
(Accept other formulas e.g. $\mathrm{CH}_{2} \mathrm{OHCHO}$ and $\mathrm{CHOH}=\mathrm{CHOH}$)
(d) $\mathrm{pH}: \mathrm{CH}_{3} \mathrm{COOH} \mathrm{pH}<7 ; \mathrm{HCOOCH}_{3} \mathrm{pH}=7$ / ester will be higher / acid will be lower

Smell: $\mathrm{CH}_{3} \mathrm{COOH}$ pungent/vinegar smell; HCOOCH_{3} sweet smell
Boiling point: $\mathrm{CH}_{3} \mathrm{COOH}$ higher; HCOOCH_{3} lower
([1] for each test, [1] for results of each test, [4 max])
3. (a) $\mathrm{Mg}: 0 \mathrm{Cu}^{2+}:+2$ (need both for mark)
$\begin{array}{ll}\text { (b) } & \mathrm{Cu}^{2+} \\ \text { (Accept copper } / \mathrm{Cu})\end{array}$ [1]
(c) Ti (reacts with Ni^{2+} and Cu^{2+}) is a stronger reducing agent than Ni and Cu

But weaker reducing agent than Mg [1]
Therefore, Mg, Ti, Ni, Cu

SECTION B

4. (a) (i) Acid: proton / H^{+}donor [1]
Base: proton / H^{+}acceptor [1]
(ii) A pair that differs by a proton / H^{+} [1]
$\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}$(accept other valid answers) [1]
(iii) Both [1]
Acid: $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$ [1]
Base: $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-}$ [1](States not required; accept single arrow)
(iv) $\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-}$ [1]
Undergoes (base) hydrolysis / reacts with water to produce OH^{-} [1]
OR Products of hydrolysis are a weak acid and strong base
(b) Measure $\mathrm{pH} /$ use pH meter / use universal indicator [1]
Strong acid has lower $\mathrm{pH} /$ weak acid has higher pH [1]
Measure conductivity [1]
Strong acid has higher conductivity / weak acid has lower conductivity [1]
React with magnesium / calcium carbonate [1]
Strong acid reacts faster / weak acid reacts slower [1]
Measure heat change / temperature rise on adding NaOH [1]
Strong acid has greater value / weak acid has lower value [1]
(accept any suitable pair of method and difference for [2] each)
Strong acid fully ionized / dissociated [1]
Weak acid partly ionized / dissociated [1]
(c) (i) Urea first in list and NaOH last [1]
Ammonia before caffeine [1]
(ii) Each pH unit represents a tenfold change in acidity [1]
5 pH units $\Rightarrow 10 \times 10 \times 10 \times 10 \times 10=100000$ times different [1]
$\mathrm{pH}=12-5=7$ [1]
5. (a) (i) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) / 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
(States and equilibrium sign needed for second mark)
(ii) Endothermic [1]

Bond breaking needs energy [1]
(iii) Forward reaction [1]
K increases, thus more $\mathrm{H}^{+} / \mathrm{OH}^{-}$formed
OR Temperature increase favours forward reaction to use up some of the heat supplied (second mark not awarded for only saying 'due to Le Chatelier's principle').
(Allow ECF from (ii))
(b) (i) All substances are in the same phase / state
(Accept all are gases)
(ii) No further change in temperature / colour (of iodine) / concentrations
(iii) $K_{\mathrm{c}}>1$: [products] exceed [reactants] at equilibrium / OWTTE
$K_{\mathrm{c}} \ll 1$: reaction hardly proceeds / does not proceed / [reactants] $>$ [products] [1]
(iv) Decreasing volume increases pressure / concentration [1]

However no change in equilibrium position [1]
Since number of moles of gases the same in reactants and products [1]
(v) No effect on position of equilibrium [1]

Speeds up both forward and reverse reaction [1]
No effect on $K_{\text {c }}$ [1]
Value of K_{c} is affected only by T [1]
(c) $\left(\right.$ One H_{2} reacts with one I_{2} to form 2HI)
$0.25 \mathrm{~mol} \mathrm{H}_{2}$ and $0.25 \mathrm{~mol} \mathrm{H}_{2}$ react to form 0.50 mol HI [1]
Therefore, $\left[\mathrm{H}_{2}\right]=0.15+0.25=0.40 \mathrm{~mol} \mathrm{dm}^{-3}$ [1]

$$
\left[\mathrm{I}_{2}\right]=0.05+0.25=0.30 \mathrm{~mol} \mathrm{dm}^{-3}
$$

6. (a) (i) Hydrogen bonding

A hydrogen atom bonded to a highly electronegative oxygen atom [1]
Strong / special type of dipole-dipole interaction [1]
(ii) Van der Waals' / London / dispersion forces [1]

Temporary distortion of electron cloud in the non-polar atoms / OWTTE [1]
Weak / temporary / instantaneous dipole-dipole interaction [1]
(iii) Electrostatic attraction between Na^{+}and $\mathrm{Cl}^{-} /$ions of opposite charge

Ions formed due to electron transfer
(b) (i)

[1]
[1]

[1]
(Penalise only once if charge on ion or lone e^{-}pairs on terminal atoms are missing)
(ii) $\mathrm{PCl}_{3}:$ trigonal pyramidal [1]
$<109^{\circ} / \simeq 109^{\circ}$ (but not $109 \frac{1}{2}^{\circ}$ or tetrahedral angle)
$\mathrm{NH}_{2}{ }^{-}$: bent / angular / v-shaped [1]
$<109^{\circ} / \simeq 109^{\circ}\left(\right.$ but not $\left.109 \frac{1}{2}^{\circ}\right)$ [1]
$\mathrm{NH}_{4}{ }^{+}$: tetrahedral [1]
$109 \frac{1}{2}^{\circ}$ [1]
(c) III II I [1]

Van der Waals' forces between molecules [1]
III has the least surface area, therefore, less van der Waals' forces/ [1]
I has the largest surface area, therefore, most van der Waals' forces

