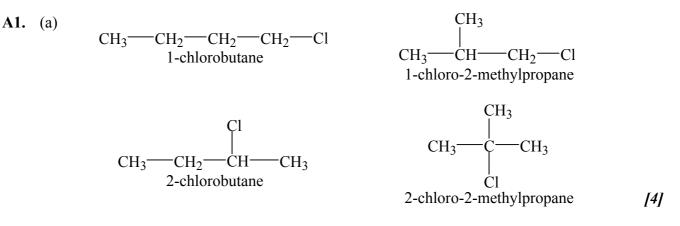


MARKSCHEME


November 2001

CHEMISTRY

Standard Level

Paper 3

OPTION A – HIGHER ORGANIC CHEMISTRY

(Award [1/2] for each correct answer (name, structure) then round down if necessary for total mark.)

(b) (i) 2-chloro-2-methylpropane (name or structure). [1] Nucleophilic substitution first order or unimolecular. [1]

(ii)
$$\begin{array}{c} CH_3 \\ CH_3 & - C^+ \\ CH_3 \end{array}$$
 [1]

Formation of intermediate is slower than its decomposition. [1]

(c) 1-chlorobutane **OR** 1-chloro-2-methylpropane (accept name or correct structure) [1]

 $\begin{array}{c} C_2H_5 \\ C_2H_$ (d)

(Award [1] for each correct structure.)

Total [12 marks]

[2]

A2. Accept either compound **B** or propanone. [1] Peaks at 15/43 consistent with CH₃⁺ / CH₃CO⁺ from CH₃COCH₃ [1] No peak at 29 consistent with $C_2H_5^+$ or CHO^+ from C_2H_5CHO [1]

OPTION B – HIGHER PHYSICAL CHEMISTRY

B1. (a) rate =
$$k[N_2O_3(g)]$$
 [1]

 (b) rate = (0.0300)(8.10×10⁻³) = 0.243 moldm⁻³ min⁻¹
 [2]

 (b) rate = $(0.0300)(8.10 \times 10^{-3}) = 0.243$ moldm⁻³ min⁻¹
 [2]

 (c) $t_{\Sigma} = \frac{0.693}{8.10 \times 10^{-3}} = 85.6$ min
 [2]

 (c) $t_{\Sigma} = \frac{0.693}{8.10 \times 10^{-3}} = 85.6$ min
 [2]

 (d) The half-life will remain unchanged (as it does not depend on concentration, only temperature).
 [1]

 B2. (a) (i) $[H^+] = 0.16 \mod dm^{-3} pH = -log[H^+] = 0.80$
 [1]

 (ii) $[H^+] = 0.16 \times 0.031 = 4.96 \times 10^{-3} \mod dm^{-3}$
 [1]

 pH = -log 4.96 \times 10^{-3} = 2.30
 [1]

 (iii) HC1 is a strong acid which ionises totally in solution.
 [1]

 Lactic acid is a weak acid, which ionises only partially, producing much lower
 [1]

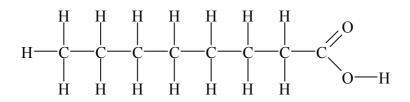
 (b) $K_n = \frac{[H_3O^+][C_3H_3O_3]}{[HC_3H_5O_3]} (or implicit in calculation)$
 [1]

$$=\frac{(4.96\times10^{-3})(4.96\times10^{-3})}{(0.16-4.96\times10^{-3})}=1.59\times10^{-4} \text{ mol dm}^{-3}$$
[1]

(units not necessary to gain mark)

(c)
$$1.59 \times 10^{-4} = \frac{(x)(x+0.10)}{(0.16-x)}$$
 (assume x is negligible) [1]

$$x = [H^+] = 2.54 \times 10^{-4} \text{ mol dm}^{-3} \text{ (units not necessary to gain mark)}$$
[1]


(N.B. Allow for error carried forward in (b) and (c).)

Total [9 marks]

OPTION C – HUMAN BIOCHEMISTRY

C1. (a) CH_2OH –CHOH– CH_2OH

(b) -COOH

(Accept $CH_3(CH_2)_6COOH$ or any correct alternative, including branched structures or alkenoic acids.)

(c) Molecules of saturated fats contain only single C—C bonds in the carbon chains / contain no double bonds. [1]
Molecules of unsaturated fats contain at least one C = C double bond. [1]
The degree of unsaturation can be found by determining the number of moles of iodine that react with one mole (or a stated mass) of fat. [1]
Iodine adds across the C = C double bond in a 1:1 stoichiometric ratio. [1]

Total [7 marks]

C2. (a) $-NH_2$ / amino group / amine. [1]

(b) Peptide bond (*accept amide bond*)

$$\begin{array}{c} O & H \\ \parallel & \parallel \\ \hline C & - N \end{array} (must show C = O bond for mark.)$$
 [1]

- (c) First hydrolyse the peptide bonds to release individual amino acids [1] then use chromatography (comparison of R_f values) (accept electrophoresis / mass spectrometry). [1] (Award both marks if X-ray crystallography is given.)
- (d) The secondary structure describes the type of coil or sheet / folding of polypeptide / α-helix and β-pleated sheet. [1]
 Tertiary structure describes the interactions between the R groups of the amino acid residues. [1]
- (e) Hydrogen bond. [1]

Total [8 marks]

[1] [1]

[1]

[1]

OPTION D – ENVIRONMENTAL CHEMISTRY

D1. (a) (i)
$$2CO + 2NO \rightarrow 2CO_2 + N_2$$

(ii)
$$CaO + SO_2 \rightarrow CaSO_3$$
 (or $2CaO + 2SO_2 + O_2 \rightarrow 2CaSO_4$)

(b)
$$2NO + O_2 \rightarrow 2NO_2$$
 [1]

$$4NO_2 + 2H_2O + O_2 \rightarrow 4HNO_3$$
^[1]

$$2SO_2 + O_2 \rightleftharpoons 2SO_3$$
[1]

$$SO_3 + H_2O \rightarrow H_2SO_4 \ (accept \ SO_2 + H_2O \rightarrow H_2SO_3)$$
[1]

(c) Irritation of the mucous membranes / fatigue / weakness / confusion (from exposure to C₆H₅CH₃) / cancer forming. [1]

Total [7 marks]

D2.	 Fresh water not available uniformly around the world / 'locked up' in glaciers a icebergs. 					
	disea	Where the consumption is necessarily high it is easily contaminated with water borne diseases / by micro-organisms from human waste / from flooding / due to inadequate chemical treatment of water supplies.				
	(a)) Reverse Osmosis: Uses high pressure to force water from salt-water through partially (semi-) permeable membrane the partially permeable membrane does not allow the passage of dissolved				
		OR	Osmosis is the net movement of water molecules from a region of high concentration, <i>i.e.</i> pure water to one of lower concentration, <i>i.e.</i> less pure water through a partially permeable membrane OR osmosis is the tendency to equalise concentrations. Due to osmosis, pure water will move through a partially permeable membrane into salt water, thus diluting it. If pressure greater than osmotic pressure is applied, the flow of solvent takes place in the opposite direction, called reverse osmosis.	[1] [1] [1]		
	(b)	Ion e	exchange:			

 Ion exchange:
 Requires the use of both a positive ion exchange (which can replace metal ions in sea water with H⁺ ions)
 [1]

 and a negative ion exchange (which can replace anions with OH⁻ ions).
 [1]

 The H⁺ and OH⁻ ions combine to form fresh/pure water.
 [1]

OPTION E – CHEMICAL INDUSTRIES

E1.	(a)	(i) N_2 obtained from the fractional distillation of liquid air. (Not enough to just state 'from air'.)		[1]	
		(ii)	$\rm H_2$ obtained from cracking of petroleum products / from water using reduction with methane / from water using reduction with naptha / catalytic reforming / electrolysis of sodium chloride solution.	[1]	
	(b)	There are four volumes (moles) of gas on LHS and only two on RHS so increasing the pressure will move the position of equilibrium to the right Increasing the pressure increases the concentration of the gases So reaction rate increases.			
	(c) The yield of ammonia is low so most of the N_2 and H_2 needs to go round again (to save waste/cost).				
			Total [8 m	arks]	
E2.	(a)	(i)	Occurs at a lower temperature (therefore uses less energy so cheaper).	[1]	
		(ii)	$C_{12}H_{26} \rightarrow C_8H_{18} + 2C_2H_4$ (or C_4H_8) (Must have both an alkane and alkene as products to gain mark.)	[1]	
			Either octane used for car engines OR alkene used for polymers.	[1]	
	(b)	(i)	balanced equation has $4H_2$ hexane and benzene.	[1] [2]	
		(ii)	benzene: production of alkylbenzene / chlorobenzene / dodecylbenzene / detergents <i>etc</i> .	[1]	
			Total [7 m	arks]	

OPTION F – FUELS AND ENERGY

F1.	(a)	Anode: Cathode: Electrolyte	zinc graphite (carbon)ammonium chloride OR zinc chloride and ammonium chloride and water.	[1] [1] [1]				
	(b)	Anode: Cathode:	$Zn \rightarrow Zn^{2+} + 2e^{-}$ $2NH_{4}^{+} + 2e^{-} \rightarrow 2NH_{3} + H_{2}$ OR $2MnO_{2} + 2NH_{4}^{+} + 2e^{-} \rightarrow Mn_{2}O_{3} + 2NH_{3} + H_{2}O$ (State symbols are not required.)	[1] [1]				
	(c)	(Award [1] each for any two from the following:) No decline in performance under high loads / no gases formed at cathode / longer shelf life / able to produce more current for a longer time / good for emergency lighting.						
	(d)) Voltage does not change voltage depends primarily on materials used.						
	Total [9 ma							
F2.	(a)		er absorbs the heat (as the waste decays). <i>to the performation of the performance of th</i>	[1]				
	(ii) There is the possibility of (radioisotopes) escaping into the wate environment.							
	(b)	(i) $^{239}_{94}$ Pu	(award [1] for Pu and [1] for correct numbers)	[2]				
		(ii) 9600	0 years (give [1] if answer wrong but four half-lives is stated)	[2]				
	Total [6 marks							