MARKSCHEME

May 2001

CHEMISTRY

Standard Level

Paper 2

SECTION A

1. (a) $\mathrm{C}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}$ (ignore state symbols) [1]
some evidence of working e.g. cycle or changing sign of ΔH [1]
-110.5 (units not required) [1]
(-110.5 on its own scores [3])
(b) absorbs heat / ΔH is positive / absorbs energy / products have more energy than reactants.
(c) (i) Breaking bonds $\mathrm{C}=\mathrm{C} ; 4(\mathrm{C}-\mathrm{H}) ; 3(\mathrm{O}=\mathrm{O})[1]$

Making bonds $\quad 2(\mathrm{O}=\mathrm{C}=\mathrm{O}) ; 2(\mathrm{H}-\mathrm{O}-\mathrm{H})[1]$

Breaking $+3748 \quad$ Making -4824 [1]
Enthalpy of combustion $=-1076(+1076$ scores [3 max] $)$ [1]
(In the absence of any credit, award [1] for breaking (+) and making (-) or $\Delta H_{c}=H_{\text {products }}-H_{\text {reactants }}$. .)
(ii) Exothermic since ΔH_{c} is negative ($N B$ consequential on sign in (c) (ii)).
(If (c) (i) is not attempted, allow exothermic because hydrocarbon combustion gives out heat / OWTTE).
2. (a) $\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right] / \mathrm{pH}>7 /$ more OH^{-}
(Accept OH^{-}ions formed)
(b) Base [1]

Accepting a proton / $\left(\mathrm{H}^{+}\right) /$hydrogen ion [1]
(c) $\mathrm{HCO}_{3}^{-} /$hydrogencarbonate / bicarbonate
3. (a) (Atomic number)

Number of protons in an atom / nucleus [1]
(Mass number)
Number of protons and neutrons in an atom / nucleus [1]
(b)

Species	Protons	Neutrons	Electrons
${ }_{6}^{14} \mathrm{C}$	6	8	6
${ }_{9}^{19} \mathrm{~F}^{-}$	9	10	10
${ }_{20}^{40} \mathrm{Ca}^{2+}$	20	20	18
$[1]$			

[3 max]
(c) Fluorine/ $\mathrm{F}_{2}[1]$
F_{2} gains electrons / F_{2} is reduced / oxidation number decreases [1]
or
Ca loses electrons / Ca oxidation number increases [1]

SECTION B

4. (a) Change of concentration of reactant/product with time [1]

Identify feasible reaction [1]
State what is to be measured [1]
Record time for specific event [1]
Plot graph of reciprocal time $\left(\frac{1}{t}\right)$ [1]
(N.B. we are timing [1] a specific process e.g. gas/precipitate appearing, etc. [1])
(b) (i) If a system at equilibrium is disturbed, the equilibrium moves in the direction which tends to reduce the disturbance (OWTTE).
(ii) Temperature and pressure / concentration [1] (ignore others)

For the factor chosen, [1] for effect/influence and [1] for explanation
Temperature: effect depends on whether endothermic or exothermic [1], explanation [1]
Pressure: effect depends on number of moles of gaseous reactants and products [1], explanation [1]
Concentration: effect depends on whether change is to reactants or products [1], explanation [1]
(iii) Molecules must collide in order to react [1]

Not all collisions lead to a reaction [1]
Minimum energy needed/activation energy [1]
Appropriate collision geometry required [1]
(iv) Temperature, concentration/pressure, catalyst, surface area [2]
(Award [2] for 3 or 4 factors and [1] for 2 factors)
(Award [1] for explanation, for example)
Temperature increase: increases frequency / number of collisions / more molecules have sufficient energy to react [1]

Conc./pressure increase: increase in the number / frequency of collisions [1]
Catalyst: reduces minimum energy needed to react / reduces E_{a} / provides alternative reaction pathway with lower energy [1]

Surface area: increases number of collisions [1]
(c) $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ (state symbols and \rightleftharpoons required) [1]

Low temperature, high yield [1]
Low temperature, low rate [1]
High pressure, high yield [1] [3 max]
High pressure, high rate [1]
5. (a) (First [3] marks could be scored from a labelled diagram)

Line spectrum [1]
(Lines) converge [1]
At high energy / high frequency / shorter wave length / blue end of spectrum [1] Electron transition between energy levels [1] (either direction)
Each transition/line is related to energy difference $/ \Delta \mathrm{E}=\frac{\mathrm{hc}}{\lambda} / \mathrm{E}=\mathrm{h} v$ [1]
(b) (i) Ionisation energy: (energy) required to remove one electron [1]
from outermost shell [1]
from gaseous atom [1]
(Allow monatomic element but not gaseous element)
(Correct equation, with (g) indicated, could score [2])
Electronegativity: tendency / ability / power to attract (not gain) electrons [1] of a shared pair / covalent bond [1]
(ii) $2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+\mathrm{H}_{2}$ products correct [1] balanced [1]

K bigger / e^{-}farther from the nucleus / K has more electron shells / increased shielding [1]
e^{-}less strongly attracted / more easily lost [1]
[4 max]
(c) Halogens: electronegativity decreases down group [1]
radius increases down group [1]
shielding effect too [1]
more shells [1]
Period 3: electronegativity increases [1]
radius falls [1]
nuclear charge increases [1]
electrons in same shell [1]
6. (a) (i) Correct Lewis diagram all valency e^{-}must be shown (lines for lone pairs are acceptable) [1]
${ }_{\times x}^{\times \times} \times \times \times \times \times \times \times \times{ }_{x}^{\times}{ }_{x}^{\times}$
Linear [1]
180° [1]
(ii) Diagram or statement showing O more electronegative than C [1] (Accept C-O bond is polar)

Cancelling out of effect [1]
Molecule not polar [1]

$$
\left(\mathrm{O}_{\mathrm{O}}^{\delta-}=\stackrel{\delta+}{\mathrm{C}} \equiv \mathrm{O} \text { scores }[2]\right)
$$

(b) Reference to H - bonding in ethanol/water [1]

Ethane not polar [1]
No H- bonds / only van der Waals [1]
Cholesterol mostly a non-polar chain / hydrocarbon [1]
(c) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ [1]

Carbon monoxide/carbon (allow soot)/water OR CO/C/ $\mathrm{H}_{2} \mathrm{O}$
(Award [1] for any two.)
(Award [1] for any one of the following:)
CO: toxic / reduces oxygen carrying capacity of red blood cells / reduces oxygen carrying capacity of haemoglobin

C (particulates): influence climate / increase atmospheric turbidity / attenuate solar radiation / cause respiratory problems
(d) Product must show all C (8) saturated with H and no double bonds [1]

Addition/reduction/hydrogenation/hardening [1]
(e) $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2} / \mathrm{H}_{2} \mathrm{~N} \sim \mathrm{NH}_{2} /$ correct name [1]
$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{HO} \sim \mathrm{OH} /$ correct name [1]
(Award [1] each for the following two structures)

EITHER the polyester repeating unit

OR the polyamide repeating unit

* This part of the statement should be related to their formulation of the respective monomers and may well be represented in the repeating unit as $\sim \sim$ at the location shown (*).

