

MARKSCHEME

May 2001

CHEMISTRY

Standard Level

Paper 2

11 pages

SECTION A

- 1. (a) $C + \frac{1}{2}O_2 \rightarrow CO$ (ignore state symbols) [1] some evidence of working e.g. cycle or changing sign of ΔH [1] -110.5 (units not required) [1] (-110.5 on its own scores [3]) [3 max]
 - (b) absorbs heat / ΔH is positive / absorbs energy / products have more energy than reactants. [1]
 - (c) (i) Breaking bonds C = C; 4(C-H); 3(O = O)[1]

Making bonds 2(O = C = O); 2(H - O - H) [1]

Breaking +3748 Making -4824 [1]

Enthalpy of combustion = -1076 (+1076 scores [3 max]) [1] [4 max]

(In the absence of any credit, award [1] for breaking (+) and making (-) or $\Delta H_c = H_{products} - H_{reactants}$.)

- (ii) Exothermic since ΔH_c is negative (*NB consequential on sign in (c) (ii)*). [1] (*If (c) (i) is not attempted, allow exothermic because hydrocarbon combustion gives out heat / OWTTE*).
- 2. (a) [OH⁻]>[H⁺] / pH > 7 / more OH⁻ [1] (Accept OH⁻ ions formed)
 (b) Base [1] Accepting a proton / (H⁺) / hydrogen ion [1] [2 max]
 - (c) HCO_3^- / hydrogenearbonate / bicarbonate [1]

3. (a) (Atomic number)

Number of protons in an atom / nucleus [1]

(Mass number)

Number of protons and neutrons in an atom / nucleus [1]

	Species	Protons	Neutrons	Electrons
	$^{14}_{6}C$	6	8	6
	$^{19}_{9} { m F}^-$	9	10	10
	${}^{40}_{20}\mathrm{Ca}^{2+}$	20	20	18
L		[1]	[1]	[1]

[3 max]

[2 max]

[2 max]

(c)	Fluorine/ F_2 [1]
	F_2 gains electrons / F_2 is reduced / oxidation number decreases [1]
	or
	Ca loses electrons / Ca oxidation number increases [1]

SECTION B

4.	(a)	Change of concentration of reactant/product with time [1] Identify feasible reaction [1] State what is to be measured [1] Record time for specific event [1]						
		Plot graph of reciprocal time $\left(\frac{1}{t}\right)$ [1]						
		(N.B. we are timing [1] a specific process e.g. gas/precipitate appearing, etc. [1						
	(b)	(i) If a system at equilibrium is disturbed, the equilibrium moves in the direction which tends to reduce the disturbance (OWTTE).						
		(ii)	Temperature and pressure / concentration [1] (ignore others) For the factor chosen, [1] for effect/influence and [1] for explanation		[3 max]			
			Temperature: effect	depends on whether endothermic or exothermic [1],				
			Pressure: effect	depends on number of moles of gaseous reactants and				
			Concentration: effect [1], e	acts [1], explanation [1] a depends on whether change is to reactants or products explanation [1]				
		 (iii) Molecules must collide in order to react [1] Not all collisions lead to a reaction [1] Minimum energy needed/activation energy [1] Appropriate collision geometry required [1] 						
		(iv)	(iv) Temperature, concentration/pressure, catalyst, surface area [2] (Award [2] for 3 or 4 factors and [1] for 2 factors)					
		(Award [1] for explanation, for example)						
			Temperature increase	: increases frequency / number of collisions / more molecules have sufficient energy to react [1]				
			Conc./pressure increa	se: increase in the number / frequency of collisions [1]				
			Catalyst:	reduces minimum energy needed to react / reduces E_a / provides alternative reaction pathway with lower energy [1]				
			Surface area:	increases number of collisions [1]	[3 max]			
	(c)) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ (state symbols and \rightleftharpoons required) [1]						
		Low Low Higl Higl	temperature, high yiel temperature, low rate pressure, high yield <i>[</i> pressure, high rate <i>[</i>]	d [1] [1]]] { [3 max]]	[4 max]			

[4 max]

(First [3] marks could be scored from a labelled diagram) At high energy / high frequency / shorter wave length / blue end of spectrum [1] Electron transition between energy levels [1] (either direction) Each transition/line is related to energy difference / $\Delta E = \frac{hc}{\lambda} / E = hv$ [1]

[5 max]

(b) (i) <u>Ionisation energy</u>: (energy) required to remove one electron [1] from outermost shell [1] from gaseous atom [1] (Allow monatomic element but not gaseous element)

(Correct equation, with (g) indicated, could score [2])

<u>Electronegativity</u>: tendency / ability / power to attract (not gain) electrons [1] of a shared pair / covalent bond [1] [5 max]

 $2K + 2H_2O \rightarrow 2KOH + H_2$ products correct [1] (ii) balanced *[1]*

5.

(a)

Line spectrum [1] (Lines) converge [1]

> K bigger / e⁻ farther from the nucleus / K has more electron shells / increased shielding [1]

e⁻ less strongly attracted / more easily lost [1]

- (c) <u>Halogens</u>: electronegativity decreases down group [1] radius increases down group [1] shielding effect too [1] more shells [1]
 - Period 3: electronegativity increases [1] radius falls [1] nuclear charge increases [1] electrons in same shell [1]

[6 max]

[4 max]

Correct Lewis diagram all valency e must be shown (lines for lone pairs are (a) (i) acceptable) [1] $\overset{\times}{O}\overset{\times}{O}\overset{\times}{\times} C\overset{\times}{\times} \overset{O}{O}\overset{\times}{O}$ Linear [1]

Cancelling out of effect [1] Molecule not polar [1]

180° *[1]*

$$(\overset{\delta_{-}}{\overset{\delta_{-}}{=}}\overset{\delta_{+}}{\overset{\delta_{-}}{=}}\overset{\delta_{-}}{\overset{\delta_{-}}{=}}$$
 scores [2])

- (b) Reference to H– bonding in ethanol/water [1] Ethane not polar [1] No H– bonds / only van der Waals [1] Cholesterol mostly a non-polar chain / hydrocarbon [1]
- (c) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ [1] Carbon monoxide/carbon (allow soot)/water OR CO/C/H₂O (Award [1] for any two.)

(Award [1] for any one of the following:) toxic / reduces oxygen carrying capacity of red blood cells / CO: reduces oxygen carrying capacity of haemoglobin

- C (particulates): influence climate / increase atmospheric turbidity / attenuate solar radiation / cause respiratory problems
- Product must show all C (8) saturated with H and no double bonds [1] (d)

Addition/reduction/hydrogenation/hardening [1]

6.

[3 max

[3 max]

[4 max]

[3 max]

[2 max]

(e) $H_2N(CH_2)_6NH_2/H_2N \sim NH_2$ / correct name [1]

HOCH₂CH₂OH / HO ---- OH / correct name [1]

(Award [1] each for the following two structures)

EITHER the polyester repeating unit

OR the polyamide repeating unit

[5 max]

* This part of the statement should be related to their formulation of the respective monomers and may well be represented in the repeating unit as ~~ at the location shown (*).