BACCALAUREATE

MARKSCHEME

November 2000

CHEMISTRY

Standard Level

Paper 2

SECTION A

1. (a) (i) $\mathrm{pH}=2.6$ (accept 2.5 to 2.7) [1]
(ii) $\mathrm{pH}=2.0$ (accept 2) [1]
$\left[\mathrm{H}^{+}\right]=0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ (accept mol/l OR M) [1]
(No mark without units.)
(iii) $15.3 \mathrm{~cm}^{3}-15.6 \mathrm{~cm}^{3}$ (units not needed) [1]
(iv) $0.016 \mathrm{moldm}^{-3}$ (ECF from (iii)) [1]
(b) (i) A strong acid is (almost) fully dissociated (ionised) whereas a weak acid is partly
dissociated.
(ii) amount (moles) $=0.5 \times 0.5=0.250 \mathrm{~mol}$ (units not needed) [1]
$\mathrm{m}=0.25 \times 60=15 \mathrm{~g}$ (units needed) [1]
2. (a) $\mathrm{Cu}^{+}+1 ; \mathrm{Cu} 0, \mathrm{Cu}^{2+}+2$. (any two correct [1], + sign needed) [1]
(b) $\mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{e}^{-}$[1]
(c) $\mathrm{Cu}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu} \quad$ [1]
3. (a) $K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}$

Units cancel for reactants and products / for numerator and denominator.
(b) Concentration of product / HI greater (than $\left[\mathrm{H}_{2}\right]$ and $\left[\mathrm{I}_{2}\right]$)
(c) It will have no effect.
(d) As the reaction is endothermic, increasing T will shift equilibrium position to the right.
4.
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ 1-propanol OR propan-1-ol (need both for mark) [1]
2-propanol OR propan-2-ol (need both for mark) [1]
(If only both names are correct or only both formulas, award [1])
(b) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{3} \mathrm{H}_{7}+\mathrm{H}_{2} \mathrm{O}$ [1]
OR $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{3} \mathrm{H}_{7}+\mathrm{H}_{2} \mathrm{O}$propyl ethanoate (OR 2-propyl ethanoate OR isopropyl ethanoate)[1]

SECTION B

5. (a) mass number $=$ number of (protons + neutrons)
atomic number $=$ number of protons $(=\mathrm{Z}) \quad$ [1]
number of electrons $=$ number of protons $(=Z)$ [1]
number of neutrons $=\mathrm{A}-\mathrm{Z} \quad$ [1]
(b) $\mathrm{C}: 2,4$ (accept 2.4) [1]
${ }^{12} \mathrm{C}^{4-}: 6$ protons, 6 neutrons
10 electrons [1]
Protons and neutrons in the nucleus and electrons in shells / orbits [1]
(c) If fraction of ${ }^{35} \mathrm{Cl}=x$, then $35.0 x+37.0(1-x)=35.5 /$ other sensible working
(c) If fraction of $\mathrm{Cl}=x$, then $35.0 x+37.0(1-x)=35.5 /$ other sensible working [1]
$75 \%{ }^{35} \mathrm{Cl}$.

$$
\begin{array}{ll}
\text { Similar: } & \begin{array}{l}
\text { number of electrons / number of electron shells / number of valence } \mathrm{e}^{-} \text {/ } \\
\text { chemical properties; }
\end{array} \tag{1}\\
\text { [1] }
\end{array}
$$

(Accept any two.)
Different: physical property (which depends on mass). (Accept different boiling points OR different rates of diffusion OR different melting points OR...)
(d) (i) Atomic radii: For halogens an increase because valence electrons are placed in successive energy levels
further away from the nucleus. [1]
In period 3, radii decreases as electrons are placed in the same main energy level.
Increased nuclear charge increases attraction for valence electrons (pulling them closer).
(ii) $\mathrm{Mg}(\mathrm{g}) \rightarrow \mathrm{Mg}^{+}(\mathrm{g})+\mathrm{e}^{-}$
(Both state symbols needed.)

$$
\begin{aligned}
& \text { Once the first outer electron is removed, the second outer electron experiences } \\
& \text { more attraction / atom becomes more positively charged }
\end{aligned}
$$

6. (a) (i) Example: $\mathrm{H}_{2} \mathrm{O} / \mathrm{NH}_{3} / \mathrm{HF}$ etc. [1]

Electrons shared unequally [1]
Different electronegativities [1]
polar bonds [1]
dipole-dipole interaction between molecules [1]
(ii) Diamond or SiO_{2} or SiC or Si or graphite. [1]
covalent bonding [1]
present throughout the structure / involving all atoms (OWTTE) [1]
(iii) $\mathrm{NH}_{4} \mathrm{Cl}$ or $\mathrm{Na}_{2} \mathrm{CO}_{3}$ etc. [1]

Covalent bonding within $\mathrm{NH}_{4}^{+}, \mathrm{CO}_{3}^{-}$or... [1]
Electrostatic interaction between oppositely charged ions. [1]
Three-dimensional (or 3-D) lattice / network solid [1]
(b)

$109 \frac{1}{2}^{\circ}$ (around the carbon). [1]
Four electron pairs / charge centres arranged as far apart as possible / repel equally [1]
107° / less than 109° (around N) [1]
Lone pair of electrons (on N) repels more strongly. [1]
(c) Ethane: non-polar bonds [1]
experiences only weak van der Waal's forces. [1]
Aminoethane: polar $\mathrm{N} — \mathrm{H}$ bonds [1]
so has H -bonding as well [1]
(If answer implies aminoethane is polar and has dipole-dipole interaction then award only [1].)
7. (a) (i) The rate of reaction decreases
less frequent collisions between reactants [1]
(ii) The rate decreases
because extra liquid decreases thiosulfate concentration, [1]
so thiosulphate $-\mathrm{H}^{+}$collisions are less frequent. [1]
(iii) The rate is increased
because at the higher temperature, kinetic energy increases OR the particles [1] move faster more frequent collisions
more energetic collisions
(iv) The rate is unaffected because [1]
concentration of thiosulfate solution is not affected by size of solid. [1]
(b) Because an increase in concentration increases only collision frequency [1] increasing temperature increases both frequency and energy of collisions / number of particles with $E \geq E_{a}$.
(c) (i)

(Award [1] for correct labelling of axes and [1] for shape of graph.)
(ii) draw slopes/tangents at different times [1]
rate (at time t) $=$ slope $/$ gradient (at that time)
(iii) measuring cylinders (or pipette(s)), flask (or beaker) and stopclock or stopwatch.
some means of deciding when the amount precipitated is "visible" and so to stop timing
keep [HCl] constant / keep temperature constant / control all variables apart from $\left[\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right]$

