

MARKSCHEME

November 2000

CHEMISTRY

Standard Level

Paper 2

SECTION A

1.	(a)	(i)	pH = 2.6 (accept 2.5 to 2.7)	[1]
		(ii)	pH = 2.0 (accept 2)	[1]
			$[H^+] = 0.01 \text{ mol dm}^{-3}$ (accept mol/l OR M)	[1]
			(No mark without units.)	
		(iii)	$15.3 \text{ cm}^3 - 15.6 \text{ cm}^3$ (units not needed)	[1]
		(iv)	$0.016 \text{ mol dm}^{-3}$ (ECF from (iii))	[1]
	(b)	(i)	A strong acid is (almost) fully dissociated (ionised) whereas a weak acid is partly dissociated.	[1]
		(ii)	amount (moles) = $0.5 \times 0.5 = 0.250$ mol (units not needed) m = $0.25 \times 60 = 15$ g (units needed)	[1] [1]
2.	(a)	Cu^+	+1; Cu0, Cu^{2+} +2. (any two correct [1], + sign needed)	[1]

(b)	$Cu^+ \rightarrow Cu^{2+} + e^-$	[1]	1
· ·			·

(c)
$$\operatorname{Cu}^+ + e^- \to \operatorname{Cu}$$
 [1]

3. (a)
$$K_{\rm c} = \frac{[\rm HI]^2}{[\rm H_2][\rm I_2]}$$
 [1]

	Units cancel for reactants and products / for numerator and denominator.	[1]
(b)	Concentration of product / HI greater (than $[H_2]$ and $[I_2]$)	[1]
(c)	It will have no effect.	[1]

(d) As the reaction is endothermic, increasing T will shift equilibrium position to the right. [1]

4. (a) $CH_3CH_2CH_2OH$ 1-propanol **OR** propan-1-ol (need both for mark)[1] CH_3CHCH_3 2-propanol **OR** propan-2-ol (need both for mark)[1]

(If only both names are correct or only both formulas, award [1])

(b)
$$CH_3COOH + CH_3CH_2CH_2OH \rightarrow CH_3COOC_3H_7 + H_2O$$
 [1]

OR
$$C_2H_4O_2 + C_3H_7OH \rightarrow CH_3COOC_3H_7 + H_2O$$

ÓН

propyl ethanoate (**OR** 2-propyl ethanoate **OR** isopropyl ethanoate) [1]

SECTION B

5.	(a)	mass number = number of (protons + neutrons) atomic number = number of protons (= Z) number of electrons = number of protons (= Z) number of neutrons = $A - Z$						
	(b)	C:2, 4 (acc ${}^{12}C^{4-}$: 6 prot 10 electrons Protons and p	ept 2.4) tons, 6 neutrons neutrons in the nucleus and electrons in shells / orbits	[1] [1] [1]				
	(c)	If fraction of ${}^{35}\text{Cl} = x$, then $35.0x + 37.0(1 - x) = 35.5$ / other sensible working						
		75 % ³⁵ Cl.		[1]				
		Similar:	number of electrons / number of electron shells / number of valence e^- / chemical properties;					
		(Accept any two.)						
		Different:	physical property (which depends on mass). (Accept different boiling points OR different rates of diffusion OR different melting points OR)	[1]				
	(d)	(i) Atomic	 c radii: For halogens an increase because valence electrons are placed in successive energy levels further away from the nucleus. In period 3, radii decreases as electrons are placed in the same main energy level. Increased nuclear charge increases attraction for valence electrons (pulling them closer). 	[1] [1] [1] [1]				
		(ii) Mg(g)	\rightarrow Mg ⁺ (g)+e ⁻	[1]				
		(Both s	state symbols needed.)					
		Once t more a	he first outer electron is removed, the second outer electron experiences ttraction / atom becomes more positively charged	[1]				
		Third e that is	electron comes from inner energy level / second energy level closer to the nucleus / more strongly attracted.	[1] [1]				

6.	(a)	(i)	Example: $H_2O / NH_3 / HF etc$.	[1]
			Electrons shared unequally	[1]
			Different electronegativities	[1]
			polar bonds	[1]
			dipole-dipole interaction between molecules	[1]
		(ii)	Diamond or SiO_2 or SiC or Si or graphite.	[1]
		. ,	covalent bonding	[1]
			present throughout the structure / involving all atoms (OWTTE)	[1]
		(iii)	NH_4Cl or Na_2CO_3 etc.	[1]
		. ,	Covalent bonding within NH_{4}^{+} , CO_{2}^{-} or	[1]
			Electrostatic interaction between oppositely charged ions.	[1]
			Three-dimensional (or 3-D) lattice / network solid	[1]

(b)

	$109\frac{1}{2}^{\circ}$ (around t	he carbon).	[1]	
	Four electron pairs / charge centres arranged as far apart as possible / repel equally			
	107° / less than 109° (around N)			
	Lone pair of electrons (on N) repels more strongly.			
(c)	Ethane:	non-polar bonds	[1]	
		experiences only weak van der Waal's forces.	[1]	
	Aminoethane:	polar N—H bonds	[1]	
		so has H—bonding as well	[1]	

(If answer implies aminoethane is polar and has dipole–dipole interaction then award only [1].)

7.	(a)	(i)	The rate of reaction decreases. less frequent collisions between reactants	[1] [1]
		(ii)	The rate decreases because extra liquid decreases thiosulfate concentration, so thiosulphate - H^+ collisions are less frequent.	[1] [1] [1]
		(iii)	The rate is increased because at the higher temperature, kinetic energy increases OR the particles move faster	[1] [1]
			more frequent collisions more energetic collisions	[1]
		(iv)	The rate is unaffected because concentration of thiosulfate solution is not affected by size of solid.	[1] [1] [1]
	(b)	Because an increase in concentration increases only collision frequency increasing temperature increases both frequency and energy of collisions / number of		
		parti	cles with $E \ge E_a$.	[1]

	(Award [1] for correct labelling of axes and [1] for shape of graph.)	[2]
(ii)	draw slopes/tangents at different times rate (at time <i>t</i>) = slope / gradient (at that time)	[1] [1]
(iii)	measuring cylinders (or pipette(s)), flask (or beaker) and stopclock or stopwatch.	[1]
	some means of deciding when the amount precipitated is "visible" and so to stop timing keep [HCl] constant / keep temperature constant / control all variables apart from $[S_2O_3^{2-}]$	[1] [1]